Answer:
61.39%
Explanation:
The percent yield of a substance can be calculated using the formula:
Percent yield = actual yield/theoretical yield × 100%
Based on the information provided on the reaction in this question, the theoretical yield is given as 99.2g while the actual yield is given as 60.9g.
Hence, the percent yield is calculated thus:
% yield = 60.9/99.2 × 100
% yield = 0.6139 × 100
% yield = 61.39%
The percent yield is 61.39%
Answer:
Methane is present in solid, liquid and gaseous form.
Explanation:
Methane hydrate is present in solid state when the hydrogen-bonded water and methane gas come into contact at high pressures and low temperatures in the deep oceans while on the other hand, methane which is present inside the earth surface in gaseous form due to non-availability of water that can combine with methane. Methane is also found in liquid form when it is cool with high pressure and low temperature.
<u>Answer:</u> The final temperature of the gas is -220.6°C
<u>Explanation:</u>
To calculate the final temperature of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:
![P_1=6atm\\T_1=-33^oC=[273-33]K=240K\\P_2=1.31atm\\T_2=?](https://tex.z-dn.net/?f=P_1%3D6atm%5C%5CT_1%3D-33%5EoC%3D%5B273-33%5DK%3D240K%5C%5CP_2%3D1.31atm%5C%5CT_2%3D%3F)
Putting values in above equation, we get:

Converting the temperature from kelvins to degree Celsius, by using the conversion factor:


Hence, the final temperature of the gas is -220.6°C
Answer:
The number of outer shell electrons determines the group number of the element. The number of occupied principle quantum shells (energy levels) determines the period of the element. The proton number determines the element itself and its position.
Explanation:
In metallic bonding, valence electrons of metals move freely between neighbouring atoms. metals are ductile
because the forces that hold their atoms together are weak.
Explanation:
- Metallic bonds are the force which holds atoms together in a metal.
- Valence electrons present in the metals are freely moving between the other neighbouring atoms. The interaction between the positive ions which electrons leave behind and the valence electrons give the binding force which able to hold the metallic crystal together as it is.
- In metals, the electrons are free to travel from one metal to another metal. This speciality is the reason for their electric conductivity. And this shows that the metal-metal bond is weak in metal.