Explanation:
the energy that that is needed to break a bond is called the bond energy or dissciation energy
<span>led to the discovery of many new sea floor features of smaller scales. Deep sea trenches and sea volcanoes.
If that helped please mark brainliest! <3
-Procklownyt</span>
Answer:
a. Phosphoric Acid
b. Acetic Acid
c. Hypochlorous Acid
Explanation:
A buffer works when the pH of this one is in pKa ± 1. That means, to find which buffer system works in some pH you need to find pKa:
pKa = -log Ka
<em>pKa Acetic acid:</em>
-log1.8x10⁻⁵ = 4.74
<em>pKa phosphoric acid:</em>
-log7.5x10⁻³ = 2.12
<em>pKa hypochlorous acid:</em>
-log3.5x10⁻⁸ = 7.46
a. For a pH of 2.8 the best choice is phophoric acid because its effective range is: 1.12 - 3.12 and 2.8 is between these values.
b. pH 4.5. Acetic acid. effective between pH's 3.74 - 5.74
c. pH 7.5. Hypochlorous acid that works between 6.46 and 8.46
Answer:
22.73s
Explanation:
The reaction is a second order reaction, we know this by observing the unit of the slope.
rate constant = k = 0.056 M-1s-1
the initial concentration of BrO- [A]o = 0.80 M
time = ?
Final concentration [A]t= one-half of 0.80 M = 0.40M
1 / [A]t = kt + 1 / [A]o
1 / 0.40 = 0.056 * t + 1 / 0.80
t = (2.5 - 1.25) / 0.056
t = 22.73s
It is called Synthesis reaction