Answer:
The magnitude of the acceleration of the tip of the minute hand of the clock
.
Explanation:
Given that,
Length of minute hand = 0.55 m
Length of hour hand = 0.26 m
The time taken by the minute hand to complete one revelation is

We need to calculate the angular frequency
Using formula of angular frequency

Put the value into the formula


We need to calculate the magnitude of the acceleration of the tip of the minute hand of the clock
Using formula of acceleration

Put the value into the formula


Hence, The magnitude of the acceleration of the tip of the minute hand of the clock
.
The shades are very different
Answer:
The acceleration of the proton is 9.353 x 10⁸ m/s²
Explanation:
Given;
speed of the proton, u = 6.5 m/s
magnetic field strength, B = 1.5 T
The force of the proton is given by;
F = ma = qvB(sin90°)
ma = qvB
where;
m is mass of the proton, = 1.67 x 10⁻²⁷ kg
charge of the proton, q = 1.602 x 10⁻¹⁹ C
The acceleration of the proton is given by;

Therefore, the acceleration of the proton is 9.353 x 10⁸ m/s²
Answer:
Speed of cart's might be less than the high speed after 5 seconds.
Explanation:
Given that,
A fan cart with the fan set to high rolled across the floor.
Let the speed of fan cart with set to high is
per second.
The fan supplies a force to the cart. If a lower fan speed were used, less force would be applied. This would cause a slower change in the cart's speed. So, the cart would be rolling more slowly than
per second after 5 seconds. The speed of cart's might be less than
per second.
Force is needed
A. for a moving object to keep moving at the same speed and direction
B. for a moving object to change its speed
C. for a motionless object to remain still
D. to prevent a moving object from turning
Hence,
Speed of cart's might be less than the high speed after 5 seconds.
Answer:
basically they have too much mass in them
Explanation:
They are held tightly together by strong forces of attraction. They are held in fixed positions but they do vibrate. Because the particles don't move, solids have a definite shape and volume, and can't flow. Because the particles are already packed closely together, solids can't easily be compressed.