Answer:
a. F = 245 Newton.
b. Workdone = 392 Joules.
c. Power = 196 Watts
Explanation:
Given the following data;
Mass = 25kg
Distance = 1.6m
Time = 2secs
a. To find the force needed to lift the mass (in N );
Force = mass * acceleration
We know that acceleration due to gravity is equal to 9.8
F = 25*9.8
F = 245N
b. To find the work done by the student (in J);
Workdone = force * distance
Workdone = 245 * 1.6
Workdone = 392 Joules.
c. To find the power exerted by the student (in W);
Power = workdone/time
Power = 392/2
Power = 196 Watts.
Gasoline, kerosene, and coal.
Answer:
387 volts
Explanation:
Ohm's law is used to relate voltage, current and resistance.
The formula is as follows:V = I * R
where:
V is the applied voltage (measured in volts)
I is the current flowing (measured in amperes)
R is the resistance (measured in ohm)
In the given, we have:
current (I) = 9 amperes
resistance (R) = 43 ohm
Substitute with the givens in the above formula to get the voltage as follows:
V = 9 * 43
V = 387 volts
Hope this helps :)
Answer:
u=speed, w=wavelenght, f=frequency
It's known that u=w*f => f=u/w
u=20m/s ==> f=20/0,5 => f=40 Hz
w=0,50m
Explanation:
Answer:
-15 m/s
Explanation:
The computation of the velocity of the 4.0 kg fragment is shown below:
For this question, we use the correlation of the momentum along with horizontal x axis
Given that
Weight of stationary shell = 6 kg
Other two fragments each = 1.0 kg
Angle = 60
Speed = 60 m/s
Based on the above information, the velocity = v is



= -15 m/s