1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
White raven [17]
3 years ago
10

What provides the path for a circuit

Physics
2 answers:
satela [25.4K]3 years ago
5 0

Answer:The exit point is called the "return" because electrons always end up at the source when they complete the path of an electrical circuit.

Explanation:

ra1l [238]3 years ago
3 0
The exit point is called the "return" because electrons always end up at the source when they complete the path of an electrical circuit. The part of an electrical circuit that is between the electrons' starting point and the point where they return to the source is called an electrical circuit's "load".
You might be interested in
When does the air parcel stop losing energy?
djverab [1.8K]

Answer:

If there is no cloud (liquid water) in the parcel

Explanation:

5 0
2 years ago
Read 2 more answers
An experiment measures the growth of crystals in a liquid solution aboard the space shuttle. A collection of bottles has the liq
Fantom [35]

the control would be A. the bottle with 0% concentration, because you're not changing anything.

7 0
3 years ago
Read 2 more answers
Two strings with linear densities of 5 g/m are stretched over pulleys, adjusted to have vibrating lengths of 0.50 m, and attache
HACTEHA [7]

Answer:

2.18 kg

Explanation:

The frequency of a wave in a stretched string f = n/2L√(T/μ) where n = harmonic number, L = length of string, T = tension = mg where m = mass of object on string and g = acceleration due to gravity = 9.8 m/s² and μ = linear density of string.

For string 1, its fundamental frequency f  is when n = 1. So,

f = 1/2L√(T/μ) =  1/2L√(mg/μ)

Now for string 1, L = 0.50 m, m = 20 kg and μ = 5 g/m = 0.005 kg/m

substituting the values of the variables into f, we have

f = 1/2L√(mg/μ)

f = 1/2 × 0.50 m√(20 kg × 9.8 m/s²/0.005 kg/m)

f = 1/1 m√(196 kgm/s²/0.005 kg/m)

f = 1/1 m√(39200 m²/s²)

f = 1/1 m × 197.99 m/s

f = 197.99 /s

f = 197.99 Hz

f ≅ 198 Hz

For string 2, at its third harmonic frequency f'  is when n = 3. So,

f' = 3/2L√(T/μ) =  3/2L√(mg/μ)

Now for string 2, L = 0.50 m, m = M kg and μ = 5 g/m = 0.005 kg/m

substituting the values of the variables into f, we have

f' = 3/2L√(Mg/μ)

f' = 3/2 × 0.50 m√(M × 9.8 m/s²/0.005 kg/m)

f' = 3/1 m√(M1960 m²/s²kg)

f' = 3/1 m√M√(1960 m²/s²kg)

f' = 3/1 m √M × 44.27 m/s√kg

f' = 132.81√M/s√kg

f' = 132.81√M Hz/√kg

Since the frequency of the beat heard is 2 Hz,

f - f' = 2 Hz

So, 198 Hz - 132.81√M Hz/√kg = 2 Hz

132.81√M Hz/√kg = 198 Hz - 2 Hz

132.81√M Hz/√kg = 196 Hz

√M Hz/√kg = 196 Hz/138.81 Hz

√M/√kg = 1.476

squaring both sides,

[√M/√kg] = (1.476)²

M/kg = 2.178

M = 2.178 kg

M ≅ 2.18 kg

8 0
2 years ago
A 55 kg skater spins 12 m/s while carving a circle on the ice that has a radius of 6.0m. What net force must act on the skater t
vivado [14]
F = m.a
a = v^2 / r
a = 12^2 / 6.0
a = 24 m/s^2
F = 55 × 24
F = 1320 N
4 0
3 years ago
Two cars are traveling along a straight line in the same direction, the lead car at 25 m/s and the other car at 35 m/s. At the m
Phoenix [80]

Answer:

a. t_1=12.5\ s

b. a_2=-13.61\ m.s^{-2}  must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping

c. t_2=2.5714\ s is the time taken to stop after braking

Explanation:

Given:

  • speed of leading car, u_1=25\ m.s^{-1}
  • speed of lagging car, u_{2}=35\ m.s^{-1}
  • distance between the cars, \Delta s=45\ m
  • deceleration of the leading car after braking, a_1=-2\ m.s^{-2}

a.

Time taken by the car to stop:

v_1=u_1+a_1.t_1

where:

v_1=0 , final velocity after braking

t_1= time taken

0=25-2\times t_1

t_1=12.5\ s

b.

using the eq. of motion for the given condition:

v_2^2=u_2^2+2.a_2.\Delta s

where:

v_2= final velocity of the chasing car after braking = 0

a_2= acceleration of the chasing car after braking

0^2=35^2+2\times a_2\times 45

a_2=-13.61\ m.s^{-2} must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping

c.

time taken by the chasing car to stop:

v_2=u_2+a_2.t_2

0=35-13.61\times t_2

t_2=2.5714\ s  is the time taken to stop after braking

7 0
3 years ago
Other questions:
  • An object with a mass of 20 kg has a net force of 80 N acting on it. What is the acceleration of the object?
    10·2 answers
  • A horizontal force of 50 N is required to push a wagon across a sidewalk at a constant speed.
    13·1 answer
  • Question 3 of 5
    14·1 answer
  • This piece of equipment is a balance training device that is made out of foam and used in pilates, yoga, and relaxation exercise
    10·1 answer
  • The amplitude of a wave is the height of a wave as measured from the highest point on the wave________ to the lowest point on th
    15·2 answers
  • A meteroid is in a circular orbit 600 km above the surface of a distant planet. the planet has the same mass as Earth but has a
    14·2 answers
  • There are very, very few times that scientists make estimations because they don’t have enough time or data to test all the poss
    11·1 answer
  • You are on a boat cruising at 10 m/s when you decide to accelerate at 5 m/s^2 until you reach a speed of 30 m/s.
    5·1 answer
  • Please help me<br><br><br><br><br> Why do objects in the sky appear to move and change so much?
    6·1 answer
  • What most directly determines an object's state of matter? (Please help)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!