Answer
The force on the left across the lab table.
Explanation
The Newton's third law of motion states that; <em>action and reaction are equal but a ct in opposite direction. </em>
When the block of is pulled on the right with a force of X Newtons then there is a force -X Newtons applying and equal force on the left. For every action there must be a reaction with is equal and applying in the opposite direction.
So, if the block is pulled on the right by a force of 8 N there is another equal force applying on the left.
Answer : The frequency decreases by a factor of 2.
Explanation :
Given that the wave travels at a constant speed. The speed of the wave is given as :

Where
υ is the frequency of the wave
and λ is the wavelength of the wave.
In this case, the speed is constant. So, the relation between the frequency and the wavelength is inverse.

If the wavelength increases by a factor of 2, its frequency will decrease by a factor of 2.
Hence, the correct option is (A) " The frequency decreases by a factor of 2 ".
Current would increase <span>proportionally to voltage. </span><span> Power dissipation (heating) would increase with the square of the voltage. And resistance means, "</span><span>the refusal to accept or comply with something"</span>
Answer: NO.
Explanation: Oxygen is not a compound. It has only one element in it.
Answer:
a) 3.39 × 10²³ atoms
b) 6.04 × 10⁻²¹ J
c) 1349.35 m/s
Explanation:
Given:
Diameter of the balloon, d = 29.6 cm = 0.296 m
Temperature, T = 19.0° C = 19 + 273 = 292 K
Pressure, P = 1.00 atm = 1.013 × 10⁵ Pa
Volume of the balloon = 
or
Volume of the balloon = 
or
Volume of the balloon, V = 0.0135 m³
Now,
From the relation,
PV = nRT
where,
n is the number of moles
R is the ideal gas constant = 8.314 kg⋅m²/s²⋅K⋅mol
on substituting the respective values, we get
1.013 × 10⁵ × 0.0135 = n × 8.314 × 292
or
n = 0.563
1 mol = 6.022 × 10²³ atoms
Thus,
0.563 moles will have = 0.563 × 6.022 × 10²³ atoms = 3.39 × 10²³ atoms
b) Average kinetic energy = 
where,
Boltzmann constant,
Average kinetic energy = 
or
Average kinetic energy = 6.04 × 10⁻²¹ J
c) rms speed = 
where, m is the molar mass of the Helium = 0.004 Kg
or
rms speed = 
or
rms speed = 1349.35 m/s