Answer:
true
Explanation:
<h3><em>A healthy body will keep you in shape and less risk of getting sick</em></h3>
516.154 megawatts of heat are <em>exhausted</em> to the river that cools the plant.
By definition of energy efficiency, we derive an expression for the energy rate exhausted to the river (
), in megawatts:
(1)
Where:
- Efficiency.
- Electric power, in megawatts.
If we know that
and
, then the energy rate exhausted to the river is:


516.154 megawatts of heat are <em>exhausted</em> to the river that cools the plant.
We kindly to check this question on first law of thermodynamics: brainly.com/question/3808473
Force = mass x acceleration
Force = 4kg x 10m/s^2
Force = 40N
Answer:
option (A) - false
option (B) - true
option (C) - true
option (D) - true
option (E) - true
option (F) - true
Explanation:
The sound waves are mechanical waves that means they need a medium to travel.
The light waves are non mechanical waves it means they do not need a medium to travel.
Sound cannot travel trough vacuum.
Sound can travel through air and water.
Light can travel trough vacuum and in air and in water.
Answer:
a) E = 8628.23 N/C
b) E = 7489.785 N/C
Explanation:
a) Given
R = 5.00 cm = 0.05 m
Q = 3.00 nC = 3*10⁻⁹ C
ε₀ = 8.854*10⁻¹² C²/(N*m²)
r = 4.00 cm = 0.04 m
We can apply the equation
E = Qenc/(ε₀*A) (i)
where
Qenc = (Vr/V)*Q
If Vr = (4/3)*π*r³ and V = (4/3)*π*R³
Vr/V = ((4/3)*π*r³)/((4/3)*π*R³) = r³/R³
then
Qenc = (r³/R³)*Q = ((0.04 m)³/(0.05 m)³)*3*10⁻⁹ C = 1.536*10⁻⁹ C
We get A as follows
A = 4*π*r² = 4*π*(0.04 m)² = 0.02 m²
Using the equation (i)
E = (1.536*10⁻⁹ C)/(8.854*10⁻¹² C²/(N*m²)*0.02 m²)
E = 8628.23 N/C
b) We apply the equation
E = Q/(ε₀*A) (ii)
where
r = 0.06 m
A = 4*π*r² = 4*π*(0.06 m)² = 0.045 m²
Using the equation (ii)
E = (3*10⁻⁹ C)/(8.854*10⁻¹² C²/(N*m²)*0.045 m²)
E = 7489.785 N/C