A) We balance the masses: 4(1.00728) vs 4.0015 + 2(0.00055)4.02912 vs. 4.0026This shows a "reduced mass" of 4.02912 - 4.0026 = 0.02652 amu. This is also equivalent to 0.02652/6.02E23 = 4.41E-26 g = 4.41E-29 kg.
b) Using E = mc^2, where c is the speed of light, multiplying 4.41E-29 kg by (3E8 m/s)^2 gives 3.96E-12 J of energy.
c) Since in the original equation, there is only 1 helium atom, we multiply the energy result in b) by 9.21E19 to get 3.65E8 J of energy, or 365 MJ of energy.
Its vey True trust me on this when I say it is
Answer:
The movement of an object depends on the reference frame, so it is important to predicate it.
Explanation:
Answer:
0.02 m
Explanation:
R₁ = initial distance jumped by jumper = 7.4 m
R₂ = final distance jumped by jumper = ?
θ₁ = initial angle of jump = 45°
θ₂ = final angle of jump = 42.9°
= speed at which jumper jumps at all time
initial distance jumped is given as

final distance jumped is given as

Dividing final distance by initial distance



distance lost is given as
d = 
d = 7.4 - 7.38
d = 0.02 m