Answer:
T = 1.766(M-m) Nm where M and m are the 2 masses of the objects
Explanation:
Let m and M be the masses of the 2 objects and M > m so the system would produce torque and rotational motion on the pulley. Force of gravity that exert on each of the mass are mg and Mg. Since Mg > mg, the net force on the system is Mg - mg or g(M - m) toward the heavier mass.
Ignore friction and string mass, and let g = 9.81 m/s2, the net torque on the pulley is the product of net force and arm distance to the pivot point, which is pulley radius r = 0.18 m
T = Fr = g(M - m)0.18 = 0.18*9.81(M - m) = 1.766(M-m) Nm
Compared with the amount of current in the filament of a lamp, the amount of current in the connecting wire is
D. the same.
As per the rule, the amount of current in devices connected in series is equal. here in the given situation , the wire is in series with the filament. that is the reason that the current in filament and wire is same.
hence the correct choice is D)
Answer:
The elevator's free-body diagram has three forces, the force of gravity, a downward normal force from you, and an upward force from the tension in the cable holding the elevator. The combined system of you + elevator has two forces, a combined force of gravity and the tension in the cable.
Explanation:
For simplicity, let's call vector B-A vector C Then C is
Cx = (-6.1 - 2.2)
Cy = (-2.2 - (-6.9)) Or,
Cx = -8.3 Cy = 4.7
The magnitude is found with the Pythagorean theorem
||C|| = √(-8.3² + 4.7²) = 9.538
Answer:
the value of acceleration as a body moves with an uniform speed is zero