I would say the answer is emissions. These are the particles that are not supposed to be present in air but due to the production of different substances from humans daily activities these substances go with the air we breath. Hope this helped.
Answer:
The number before any molecular formula applies to the entire formula. So here you have five molecules of water with two hydrogen atoms and one oxygen atom per molecule. Thus you have ten hydrogen atoms and five oxygen atoms in total.
Determining the identity of substances is a critical part of chemistry because once the substance's identity is known, we can predict its behavior and understand the scenarios that it is involved in better.
For example, consider an industrial pipe where fouling (scaling) is occurring. If the compounds present in the scales are identified, steps may be taken to prevent and remove the scaling. This is one of many examples where identifying chemical substances is of high importance.
Answer:
1,2,1,2
Explanation:
You would need only one of the CH4 but 2 of the O2 then 1 CO2 and 2 H2O on each side of the equation you now have 1 carbon, 4 hydrogen, and 4 oxygen.
Answer:
All three states of matter (solid, liquid and gas) expand when heated. The atoms themselves do not expand, but the volume they take up does.
When a solid is heated, its atoms vibrate faster about their fixed points. The relative increase in the size of solids when heated is therefore small. Metal railway tracks have small gaps so that when the sun heats them, the tracks expand into these gaps and don’t buckle.
Liquids expand for the same reason, but because the bonds between separate molecules are usually less tight they expand more than solids. This is the principle behind liquid-in-glass thermometers. An increase in temperature results in the expansion of the liquid which means it rises up the glass.
Molecules within gases are further apart and weakly attracted to each other. Heat causes the molecules to move faster, (heat energy is converted to kinetic energy) which means that the volume of a gas increases more than the volume of a solid or liquid.
However, gases that are contained in a fixed volume cannot expand - and so increases in temperature result in increases in pressure.: