Answer:
is the oxidizing agent
Explanation:
An oxidizing agent is an element in a reaction that accepts the electrons of another element. It is typically hydrogen, oxide, or any halogen. In this case, it is oxygen. The answer is 02.
Answer:
Kₐ = 6.7 x 10⁻⁴
Explanation:
First lets write the equilibrium expression, Ka , for the dissociation of hydrofluoric acid:
HF + H₂O ⇄ H₃O⁺ + F⁻
Kₐ = [ H₃O⁺ ] [ F⁻ ] /[ [ HF ]
Since we are given the pH we can calculate the [ H₃O⁺ ] ( pH = - log [ H₃O⁺ ] , and because the acid dissociates into a 1: 1 relation , we will also have [F⁻ ]. The [ HF ] is given in the question so we have all the information that is needed to compute Kₐ.
pH = -log [ H₃O⁺ ]
1.68 = - log [ H₃O⁺ ]
Taking antilog to both sides of this equation:
10^-1.68 = [ H₃O⁺ ] ⇒ 2.1 X 10⁻² M= [ H₃O⁺ ]
[ F⁻ ] = 2.1 X 10⁻² M
Solving for Kₐ :
Kₐ = ( 2.1 X 10⁻² ) x ( 2.1 X 10⁻² ) / 0.65 = 6.7 x 10⁻⁴
(Rounded to two significant figures, the powers of 10 have infinite precision )
Answer: 16.7 gallon
Explanation:
Given: The car can drive 30.3 miles when 1 gallon of gasoline is used.
Distance covered = 506.3 miles
Thus for 30.3 miles, the amount of gasoline used= 1 gallon
For 506.3 miles, the amount of gasoline used=
Thus the amount of gasoline used is 16.7 gallons.
Answer: Proton will have larger wavelength
Explanation:
(de-Broglie's equation)

h= Planck constant
m= mass of the particle
v= velocity of the particle
As we can see from the de-Broglie's equation , that wavelength is inversely proportional to the product of mass into velocity of the object.
The wavelength of proton will be higher than that fast moving golf ball because mass of proton
is very small than that of the golf ball (45.93 g). Proton is moving at slow velocity and the golf ball is moving with fast velocity by which value of product of mass into velocity of proton will be lower than the value of product of mass into velocity of the golf ball which will result in larger value of wavelength of the proton.