Answer:
Spring potential energy = 7.875Nm
Explanation:
<u>Given the following data;</u>
Extension, e = 15cm to meters = 15/100 = 0.15m
Spring constant, k = 350n/m
To find the force;
Force = spring constant * extension
Force = 350 * 0.15
Force = 52.5 Newton.
Now to find the spring potential energy we would use the formula below;
Spring potential energy = force * extension
Substituting into the equation, we have;
Spring potential energy = 52.5 * 0.15
<em>Spring potential energy = 7.875Nm</em>
Answer:


Explanation:


if t=3.6s and initial velocity, v0, is -5m/s


if t=3.6s and the initial displacement, s0, is -8m:

Answer: A. The total displacement divided by the time and C. The slope of the ant's displacement vs. time graph.
Explanation:
Hi! The question seems incomplete, but I found the options on the internt:
A. The total displacement divided by the time.
B. The slope of the ant's acceleration vs. time graph.
C. The slope of the ant's displacement vs. time graph.
D. The average acceleration divided by the time.
Now, since we know the ant is travelling at a constant speed, its average velocity
will be expressed by the following equation:

Where:
is the ant's total displacement
is the time it took to the ant to travel to the kitchen
Hence one of the correct options is: A. The total displacement divided by the time
On the other hand, this can be expressed by a displacement vs. time graph graph, where the slope of that line leads to the equation written above. So, the other correct option is:
C. The slope of the ant's displacement vs. time graph.
Answer:
His first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force. In other words its inertia.
Explanation: