Answer:
c. You would weigh less on planet A because the distance between
you and the planet's center of gravity would be smaller.
Explanation:
The statement that best describes your weight on each planet is that you would weigh less on planet A because the distance between you and the planet's center of gravity would be smaller.
- This is based on Newton's law of universal gravitation which states that "the force of gravity between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
Since weight is dependent on the force of gravity and mass, the planet with more gravitational pull will have masses on them weighing more.
- Since the distance between the person and the center of the planet is smaller, therefore, the weight will be lesser.
The critical angle formula should be: sin^-1(1/n)
where "n" is 1.501 into the air
<span>The critical angle of light travelling from benzene, happens because the larger angles of incidence from the inside of the benzene has experienced the total internal reflection. </span>
If Ross takes two months off from training, his fitness level will reduce in comparison to what it was two months ago.
- In as little as 3–4 weeks after beginning strength training, Ross will probably experience weight increase, energy loss, diminished balance, diminished strength (making it tougher to carry out daily tasks), and overall fewer fitness levels.
- Many people mistakenly believe they lose muscle mass far more quickly than they actually do because their muscles' ability to store water and glycogen is declining.
- A decrease in strength and muscle mass, with beginners experiencing a smaller decline in strength than experienced lifters.
- Ross will experience Increased VO2 Max from exercise. VO2 Max is almost completely lost in people who train at lower intensities.
learn more about fitness here: brainly.com/question/13490156
#SPJ10
Answer:
7.9m/s
Explanation:
We are given that
Mass of wagon=40 kg

Tension=
Initial velocity of wagon=
Displacement=s=80 m
Net force applied on wagon=
By using 

We know that

Using the formula

