Here if we assume that there is no air friction on both balls then we can say

now the acceleration is given as


so here both the balls will have same acceleration irrespective of size and mass
so we can say that to find out the time of fall of ball we can use


now from above equation we can say that time taken to hit the ground will be same for both balls and it is irrespective of its mass and size
Answer:
True
Explanation:
Pressure is defined as:

where
F is the magnitude of the force perpendicular to the surface
A is the surface
Therefore, pressure is inversely proportional to the area of the surface:

this means that, assuming that the forces in the two situations (which have same magnitude) are both applied perpendicular to the surface, the force exerted over the smaller area will exert a greater pressure. Hence, the statement"
<em>"A force acting over a large area will exert less pressure per square inch than the same force acting over a smaller area"</em>
is true.
<span>To find the acceleration we are given two facts to begin. The impact at 16 km/h and the dent of 6.4 cm, or 0.064 meters. In solving the problem uniform acceleration is assumed, which would mean the avg speed during the impact was 8 km/hr by taking 16/2. We know distance = rate*time (d=r*t) . So t = d / r, so 0.64/8 = 0.008hr for t. Now we can solve for acceleration by taking a = 16 / 0.008 = 2000 km/hr.</span>
<span>The answer is none. According to the first law of Newton, an object stays at the same speed in the same direction if there are not forces unbalancing the object. Without friction, the car would be moving forever, unless there is another force accelerating or stopping the car.</span>