1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mumz [18]
2 years ago
8

A solid disk has a mass of 162 kg and a radius of 1.30m. This

Physics
1 answer:
RideAnS [48]2 years ago
8 0

Answer:

754.3 m

Explanation:

The moment of inertia of the solid disk:

I = mR^2/2

Where m is the disk mass and R is the radius of the disk.

I = 162*1.3^2/2 = 136.89 kgm^2

The angular kinetic energy of the disk is then:

E_k = I\omega^2/2 = 136.89 * 18^2/2 = 22176.18 J

By law of energy conservation, this energy is converted to potential energy to pick up the 3kg block

let g = 9.8 m/s2

E_p = m_bgh = 22176.18 J

where m_b = 3 kg is the mass of block

3*9.8h = 22176.18

h = \frac{22176.18}{3*9.8} = 754.3 m

You might be interested in
Kevin draws a figure that has 4 sides all sides have the same length his figure has no right angels what figure does he draw
Svetllana [295]
Diamond/ rhombus/ parallelogram
4 0
3 years ago
1. A large ball was let go on a hill and started rolling down with a constant acceleration of 4.2 m/s². What was the velocity of
pochemuha

Answer:

<em>The velocity after 12s is 50.4m/s</em>.

Explanation:

<em>In acceleration formula make velocity the </em><em>subject.</em>

<em> acceleration(a) = velocity(</em>v)÷time(t)

<h3><em> </em><em>velocity</em><em> </em><em>(</em><em>v)</em><em> </em><em>=</em><em> </em><em>acceleration</em><em>(</em><em>a)</em><em>×</em><em>t</em><em>ime</em><em>(</em><em>t)</em></h3>

<em>V </em><em>=</em><em> </em><em>4</em><em>.</em><em>2</em><em>m</em><em>/</em><em>s²</em><em>×</em><em>1</em><em>2</em><em>s</em>

<em>V </em><em>=</em><em> </em><em>5</em><em>0</em><em>.</em><em>4</em><em>m</em><em>/</em><em>s</em>

<em>Therefore</em><em> the</em><em> </em><em>velocity</em><em> </em><em>after</em><em> </em><em>1</em><em>2</em><em>s</em><em> </em><em>is </em><em>5</em><em>0</em><em>.</em><em>4</em><em>m</em><em>/</em><em>s.</em>

8 0
1 year ago
At a certain location, wind is blowing steadily at 9 m/s. Determine the mechanical energy of air per unit mass and the power gen
Misha Larkins [42]

Answer:

  1. The specific mechanical energy of the air in the specific location is 40.5 J/kg.
  2. The power generation potential of the wind turbine at such place is of 2290 kW
  3. The actual electric power generation is 687 kW

Explanation:

  1. The mechanical energy of the air per unit mass is the specific kinetic energy of the air that is calculated using: \frac{1}{2} V^2 where V is the velocity of the air.
  2. The specific kinetic energy would be: \frac{1}{2}(9\frac{m}{s})^2=40.5\frac{m^2}{s^2}=40.5\frac{m^2 }{s^2}\frac{kg}{kg}=40.5\frac{N*m }{kg}=40.5\frac{J}{kg}.
  3. The power generation of the wind turbine would be obtained from the product of the mechanical energy of the air times the mass flow that moves the turbine.
  4. To calculate mass flow it is required first to calculate the volumetric flow. To calculate the volumetric flow the next expression would be: \frac{V\pi D_{blade}^2}{4} =\frac{9\frac{m}{s}\pi(80m)^2}{4} =45238.9\frac{m^3}{s}
  5. Then the mass flow is obtain from the volumetric flow times the density of the air: m_{flow}=1.25\frac{kg}{m^3}45238.9\frac{m^3}{s}=56548.7\frac{kg}{s}
  6. Then, the Power generation potential is: 40.5\frac{J}{kg} 56548.7\frac{kg}{s} =2290221W=2290.2kW
  7. The actual electric power generation is calculated using the definition of efficiency:\eta=\frac{E_P}{E_I}}, where η is the efficiency, E_P is the energy actually produced and, E_I is the energy input. Then solving for the energy produced: E_P=\eta*E_I=0.30*2290kW=687kW
6 0
2 years ago
A car travels at a constant rate for 25 miles, going due east for one hour. Then it travels at a constant rate another 60 miles
egoroff_w [7]

60 mph east...........

6 0
2 years ago
Read 2 more answers
Due to the wave nature of light, light shined on a single slit will produce a diffraction pattern? Green light (520 nm) is shine
TiliK225 [7]

Answer:

Yes, it will produce a diffraction pattern.

a. 3.9 mm b. 1.95 mm

Explanation:

The light shined from a single slit will produce a diffraction pattern because,  the wavefront act as wavelets which generates its own wave according to Huygens principle. This therefore causes the diffraction pattern.

Given

wavelength of green light, λ = 520 nm = 520 × 10⁻⁹ m = 5.20 × 10⁻⁷ m

width of slit, d = 0.440 mm = 0.44 × 10⁻³ m = 4.4 × 10⁻⁴ m

Distance of slit from central maximum , D = 1.65 m

Distance of first minimum from central maximum, y = ?

a. The relationship between the slit width and wavelength is given by [tex} dsinθ = mλ [/tex]where d = slit width, θ = angular distance from central maximum, λ = wavelength of light and m = ±1, ±2, ±3...

The relationship between y and D is given by tanθ = y/D

Since θ is small, sinθ ≈ θ ≈ tanθ

so, dθ = mλ ⇒ θ = mλ/d = y/D

Therefore, y = mλD/d

Now, for the first minimum above the slit, m = +1 and for the first minimum below the slit, m = -1. So, y₁ =  λD/d and y₋₁ =  -λD/d. So, the width of the central maximum Δy is the difference between the first minima below and above the central maximum. So, Δy = y₁ - y₋₁ = λD/d -(-λD/d) = 2λD/d

Substituting the values from above, Δy= 2 × 5.20 × 10⁻⁷ × 1.65/4.4 × 10⁻⁴ =  3900 × 10⁻⁶ m = 3.9 × 10⁻³ m = 3.9 mm

b. The first order fringe is the fringe located between the first minimum and the second minimum. From dsinθ = mλ and tanθ = y/D when θ is small, sinθ ≈ θ ≈ tanθ. So, y = mλD/d. Let m= 1 and m=2 be the first and second minima respectively. So,y₁ =  λD/d and y₂ =  2λD/d. The difference Δy₁ = y₂ - y₁ is the width of the first order fringe. Therefore, Δy₁ = 2λD/d - λD/d= λD/d. Substituting the values from above, we have

λD/d= 5.20 × 10⁻⁷ × 1.65/4.4 × 10⁻⁴= 1.95 × 10⁻³ m = 1.95 mm

7 0
3 years ago
Other questions:
  • What is your question?
    11·1 answer
  • A 20~\mu F20 μF capacitor has previously charged up to contain a total charge of Q = 100~\mu CQ=100 μC on it. The capacitor is t
    10·1 answer
  • Would anyone pls help me on these questions<br><br><br><br> Thanks
    7·2 answers
  • A hockey puck on a frozen pond with an initial speed of 13.7 m/s stops after sliding a distance of 216.9 m. Calculate the averag
    6·1 answer
  • Planet that is one astronomical unit from the sun
    6·1 answer
  • A freight train is accelerating on a level track. The tension in the coupling between the engine and the first freight car would
    14·1 answer
  • The length of stereocilia actually vary from 10 to 50 micrometers. Again, assuming that they behave like simple pendula, over wh
    9·1 answer
  • This element has four valance electrons and four energy levels.
    9·1 answer
  • An object on earth with a mass of 7.5 kg has a weight of
    10·1 answer
  • The question will be on one of the comments on the answers you give just now take the points
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!