1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Butoxors [25]
3 years ago
13

Air is compressed adiabatically from p1 1 bar, T1 300 K to p2 15 bar, v2 0.1227 m3 /kg. The air is then cooled at constant volum

e to T3 300 K. Assuming ideal gas behavior, and ignoring kinetic and potential energy effects, calculate the work for the first process and the heat transfer for the second process, each in kJ per kg of air. Solve the problem each of two ways:
Engineering
1 answer:
sashaice [31]3 years ago
7 0

Answer:

Work done for the adiabatic process = -247873.6 J/kg = - 247.9 KJ/kg

Heat transfer for the constant volume process = - 244.91 KJ/kg

Explanation:

For the first State,

P₁ = 1 bar = 10⁵ Pa

T₁ = 300 K

V₁ = ?

Second state

P₂ = 15 bar = 15 × 10⁵ Pa

T₂ = ?

V₂ = 0.1227 m³/kg

Third state

P₃ = ?

T₃ = 300 K

V₃ = ?

We require the workdone for step 1-2 (which is adiabatic)

And heat transferred for steps 2-3 (which is isochoric/constant volume)

Work done for an adiabatic process is given by

W = K(V₂¹⁻ʸ - V₁¹⁻ʸ)/(1 - γ)

where γ = ratio of specific heats = 1.4 for air since air is mostly diatomic

K = PVʸ

Using state 2 to calculate for k

K = P₂V₂ʸ = (15 × 10⁵)(0.1227)¹•⁴ = 79519.5

We also need V₁

For an adiabatic process

P₁V₁ʸ = P₂V₂ʸ = K

P₁V₁ʸ = K

(10⁵) (V₁¹•⁴) = 79519.5

V₁ = 0.849 m³/kg

W = K(V₂¹⁻ʸ - V₁¹⁻ʸ)/(1 - γ)

W = 79519.5 [(0.1227)⁻⁰•⁴ - (0.849)⁻⁰•⁴]/(1 - 1.4)

W = (79519.5 × 1.247)/(-0.4) = - 247873.6 J/kg = - 247.9 KJ/kg

To calculate the heat transferred for the constant volume process

Heat transferred = Cᵥ (ΔT)

where Cᵥ = specific heat capacity at constant volume for air = 0.718 KJ/kgK

ΔT = T₃ - T₂

We need to calculate for T₂

Assuming air is an ideal gas,

PV = mRT

T = PV/mR

At state 2,

V/m = 0.1227 m³/kg

P₂ = 15 bar = 15 × 10⁵ Pa

R = gas constant for air = 287.1 J/kgK

T₂ = 15 × 10⁵ × 0.1227/287.1 = 641.1 K

Q = 0.718 (300 - 641.1) = - 244.91 KJ/kg

You might be interested in
List the parts of a manual transmission <br><br> List the parts of a typical clutch assembly?
True [87]

Answer:

Explanation: Clutch Plate.

Clutch Cover.

Clutch Bearing (Release bearing)

Release Fork (clutch fork)

7 0
3 years ago
700.0 liters of a gas are prepared at 760.0 mmHg and 100.0 °C. The gas is placed into a tank under high pressure. When the tank
ololo11 [35]

Answer:

The volume of the gas is 11.2 L.

Explanation:

Initially, we have:

V₁ = 700.0 L

P₁ = 760.0 mmHg = 1 atm

T₁ = 100.0 °C

When the gas is in the thank we have:

V₂ =?

P₂ = 20.0 atm

T₂ = 32.0 °C      

Now, we can find the volume of the gas in the thank by using the Ideal Gas Law:

PV = nRT

V_{2} = \frac{nRT_{2}}{P_{2}}    (1)

Where R is the gas constant

With the initials conditions we can find the number of moles:

n = \frac{P_{1}V_{1}}{RT_{1}}    (2)

By entering equation (2) into (1) we have:

V_{2} = \frac{P_{1}V_{1}}{RT_{1}}*\frac{RT_{2}}{P_{2}} = \frac{1 atm*700.0 L*32.0 ^{\circ}}{100.0 ^{\circ}*20.0 atm} = 11.2 L

Therefore, When the gas is placed into a tank the volume of the gas is 11.2 L.

I hope it helps you!                                                                                                                                                                                

5 0
3 years ago
Isormophous phase diagram
shusha [124]

Answer:

Phase diagrams represent the relationship between temperature and the composition of phases present at equilibrium. An isomorphous system is one in which the solid has the same structure for all compositions. The phase diagram shown is the diagram for Cu-Ni, which is an isomorphous alloy system.

Hope it help you friend

6 0
3 years ago
A student needs to measure the drag on a prototype of characteristic length dp moving at velocity Up in air at sea-level conditi
saw5 [17]

Answer: Yes

Explanation:

Since both the prototype of characteristics length dp and the model of characteristics length dm are moving at a velocity up in air and are both at sea level conditions, they tend to be pulled by the same drag force which acts downwards against their motion i.e product of mass and acceleration due to gravity.

5 0
3 years ago
Air pollutants produced by mining activities,and their characteristics​
marishachu [46]

Answer:

All activities during ore extraction, processing, handling, and transport depend on equipment, generators, processes, and materials that generate hazardous air pollutants such as particulate matter, heavy metals, carbon monoxide, sulfur dioxide, and nitrogen oxides.

Explanation:

5 0
3 years ago
Other questions:
  • A 12-kN tensile load will be applied to a 50-m length of steel wire with E = 200 GPa. Determine the smallest diameter wire that
    6·1 answer
  • The _______ is a tendency to assume that people with one positive attribute (e.g., who are physically attractive) also have othe
    7·1 answer
  • Physical strength and dexterity for operating tools are most important for
    5·1 answer
  • A mixture of air and methane is formed in the inlet manifold of a natural gas-fueled internal combustion engine. The mole fracti
    14·1 answer
  • The textile industry has seen steady growth in the United States.<br> O True<br> O False
    12·1 answer
  • Which one of the following women won the American Mathematical Society Scatter Prize, a Clay Mathematics Institute Fellowship, a
    8·1 answer
  • You have a motor that runs at 1.5 amps from a 12 volt power source, how many watts of power is it using?
    8·1 answer
  • A rod that was originally 100-cm-long experiences a strain of 82%. What is the new length of the rod?
    9·1 answer
  • Briefly discuss if it would be better to operate with pumps in parallel or series and how your answer would change as the steepn
    8·1 answer
  • The "Big Dig" was the nickname of the civil engineering project that redesigned the highway Infrastructure for the city of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!