Answer:Report writing consists of the history and facts of a project or of any kind of event. It is useful to record past history and an overall summary of decisions. Report writing helps to solve problems as a path. Writing a report will guide you in a way that will modernize details of the improvements and upcoming plans.
Answer:
Given that the temperature of the window is below the dew point it will condensate.
Explanation:
A psychrometric chart (like the one attached) will give you the information needed. This chart is for 14.696 psia.
On the bottom horizontal axes you have the dry-bulb temperature, in this case 70°F, going up from this point you can reach the 50% relative humidity curve (red point on chart), going horizontally from this point to the 100% relative humidity you get the dew point temperature (the point at which moisture will condensate) (blue point on chart). In this case the dew point is 50°C. Given that the temperature of the window is below the dew point it will condensate.
Answer:
Some general principles are given below in the explanation segment.
Explanation:
Sewage treatment seems to be a method to extract pollutants from untreated sewage, consisting primarily of domestic sewage including some solid wastes.
<u>The principles are given below:</u>
- Unless the components throughout the flow stream become greater than the ports or even the gaps throughout the filter layer, those holes would be filled as either a result of economic detection.
- The much more common element of filtration would be the use of gravity to extract a combination.
- Broadcast interception or interference.
- Inertial influence.
- Sieving seems to be an excellent method to distinguish particulates.
Answer:
The rate of heat generation in the wire per unit volume is 5.79×10^7 Btu/hrft^3
Heat flux is 9.67×10^7 Btu/hrft^2
Explanation:
Rate of heat generation = 1000 W = 1000/0.29307 = 3412.15 Btu/hr
Area (A) = πD^2/4
Diameter (D) = 0.08 inches = 0.08 in × 3.2808 ft/39.37 in = 0.0067 ft
A = 3.142×0.0067^2/4 = 3.53×10^-5 ft^2
Volume (V) = A × Length
L = 20 inches = 20 in × 3.2808 ft/39.37 in = 1.67 ft
V = 3.53×10^-5 × 1.67 = 5.8951×10^-5 ft^3
Rate of heat generation in the wire per unit volume = 3412.15 Btu/hr ÷ 5.8951×10^-5 ft^3 = 5.79×10^7 Btu/hrft^3
Heat flux = 3412.15 Btu/hr ÷ 3.53×10^-5 ft^2 = 9.67×10^7 Btu/hrft^2
Answer:
Suction and exhaust processes do not affect the performance of Otto cycle.
Explanation:
Step1
Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.
Step2
Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.
Step3
The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:
Process 0-1 is suction process and process 1-0 is exhaust process.