Answer:
<em> - 14.943 W/m^2K ( negative sign indicates cooling ) </em>
Explanation:
Given data:
Area of FPC = 4 m^2
temp of water = 60°C
flow rate = 0.06 l/s
ambient temperature = 8°C
exit temperature = 49°C
<u>Calculate the overall heat loss coefficient </u>
Note : heat lost by water = heat loss through convection
m*Cp*dT = h*A * ( T - To )
∴ dT / T - To = h*A / m*Cp ( integrate the relation )
In (
) = h* 4 / ( 0.06 * 10^-3 * 1000 * 4180 )
In ( 41 / 52 ) = 0.0159*h
hence h = - 0.2376 / 0.0159
= - 14.943 W/m^2K ( heat loss coefficient )
Answer:
The number of inputs processed by the new machine is 64
Solution:
As per the question:
The time complexity is given by:

where
n = number of inputs
T = Time taken by the machine for 'n' inputs
Also
The new machine is 65 times faster than the one currently in use.
Let us assume that the new machine takes the same time to solve k operations.
Then
T(k) = 64 T(n)


k = 64n
Thus the new machine will process 64 inputs in the time duration T
If you are drawing and dimensioning with a computer program the dimension will be inaccurate... If it is mechanical drawing then the fabricator would not have enough information to accurately measure the component. ie a circle turned a few degrees away from perp. would appear to be an ellipse. and may actually dimension that way
Answer:
Electrical conductivity or specific conductance is the reciprocal of electrical resistivity. It represents a material's ability to conduct electric current. It is commonly signified by the Greek letter σ (sigma), but κ (kappa) (especially in electrical engineering) and γ (gamma) are sometimes used.
Answer:
because it was a cool game at that time
Explanation: u didnt give us any text
pls mark brainliest