Answer:
93 km/h
Explanation:
Given that a bus took 8 hours to travel 639 km. For the first 5 hours, it travelled at an average speed of 72 km/h
Let the first 5 hours journey distance = F
From the formula of speed,
Speed = distance/time
Substitute speed and time
72 = F/5
F = 72 × 5 = 360 km
The remaining distance will be:
639 - 360 = 279km
The remaining time will be:
8 - 5 = 3 hours
Speed = 279/3
Speed = 93 km/h
Therefore, the average speed for the remaining time of the journey is equal to 93 km/h
Answer:
<em>A hypothesis</em> is a limited explanation of a phenomenon; a scientific theory is an in-depth explanation of the observed phenomenon.
<em> A law</em> is a statement about an observed phenomenon or a unifying concept, according to Kennesaw State University. ... However, Newton's law doesn't explain what gravity is, or how it works.
Assume a maximum stopping acceleration of g/2 where g is acceleration due to gravity.
Answer:
2.99 m/s
Explanation:
Stopping distance, s = 3 ft = 0.914 m
final velocity, v = 0
a = g/2 = 4.9 m/s²
Use third equation of motion:

substitute the values to find the speed of train:

My answer i believe is simply 250 Hz, because sounds or vibrations travel in 1 cycle/second, meaning the number of cycles, in your case 250, divided by the time,1 second, will ultimately be 250 Hertz. For every Cycle/second it will equal 1 Hz, so 250/1 = 250Hz
Answer:
If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface.
Explanation:
Option A is incorrect because, given this case, it is easier to calculate the field.
Option B is incorrect because, in a situation where the surface is placed inside a uniform field, option B is violated
Option C is also incorrect because it is possible to be a field from outside charges, but there will be an absence of net flux through the surface from these.
Hence, option D is the correct answer. "If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface."