Answer:
The kinetic energy is 
Explanation:
From the question we are told that
The radius of the orbit is 
The gravitational force is 
The kinetic energy of the satellite is mathematically represented as

where v is the speed of the satellite which is mathematically represented as

=> 
substituting this into the equation

Now the gravitational force of the planet is mathematically represented as

Where M is the mass of the planet and m is the mass of the satellite
Now looking at the formula for KE we see that we can represent it as
![KE = \frac{ 1}{2} *[\frac{GMm}{r^2}] * r](https://tex.z-dn.net/?f=KE%20%20%3D%20%20%5Cfrac%7B%201%7D%7B2%7D%20%2A%5B%5Cfrac%7BGMm%7D%7Br%5E2%7D%5D%20%2A%20r)
=> 
substituting values


Answer:
The friction force acting on the object is 7.84 N
Explanation:
Given;
mass of object, m = 4 kg
coefficient of kinetic friction, μk = 0.2
The friction force acting on the object is calculated as;
F = μkN
F = μkmg
where;
F is the frictional force
m is the mass of the object
g is the acceleration due to gravity
F = 0.2 x 4 x 9.8
F = 7.84 N
Therefore, the friction force acting on the object is 7.84 N
The weight of the box is <em>w</em> = <em>mg</em>, where <em>m</em> is the mass. So
<em>m</em> = <em>w</em>/<em>g</em> = (3893.40 N) / (9.80 m/s²) ≈ 397 kg
Then the box has density
(397 kg)/(4.60 m³) ≈ 86.4 kg/m³
which is less than the density of the given liquid, so the box will float.
Answer: The temperature of the water falls by 3.3°C
Explanation:
The heat change is related to the change in temperature by the equation
dH = m Cp dT
In this example, -2665 J = 193 g x 4.184 J/g°C x dT
so dT = -3.3 °C