Answer:
The four coefficients in order, separated by commas are 1, 8, 5, 6
Explanation:
We count the atoms in order to balance this combustion reaction. In combustion reactions, the products are always water and carbon dioxide.
C₅H₁₂ + ?O₂→ ?CO₂ + ?H₂O
We have 12 hydrogen in right side and we can balance with 6 in the left side. But the number of oxygen is odd. We add 2 in the right side, so we have 24 H, and in the product side we add a 12.
As we add 2 in the C₅H₁₂, we have 10 C, so we must add 10 to the CO₂ in the product side.
Let's count the oxygens: 20 from the CO₂ + 12 from the water = 32.
We add 16 in the reactant side. Balanced equation is:
2C₅H₁₂ + 16O₂→ 10CO₂ + 12H₂O
We also can divide by /2 in order to have the lowest stoichiometry
C₅H₁₂ + 8O₂→ 5CO₂ + 6H₂O
Answer:To absorb small amounts of water in an organic solution.
Explanation:A drying agent is added to absorb small amounts of water, usually from an organic solution after its separation from an aqueous solution.
To solve this problem we just need to use the rule of three:
150g..................395.1J
450g................xJ
x = 450*395.1/150 = 1185,3J
450.0 g of the substance completely reacted with oxygen will produce 1.1853 kJ(<span>kiloJoule</span>)
I don't know if this was your answer choice but I actually got the answer to be toothpaste.
hydrated alumina, calcium carbonate, make up toothpaste
Again idk if this was an answer choice but I hope this helps, have a good day, sorry if not. c;
Answer:
The final temperature was 612 °C
Explanation:
Charles's law relates the volume and temperature of a certain amount of ideal gas, maintained at a constant pressure, using a constant of direct proportionality. In this law, Charles says that at constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases. That is, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:

When you want to study two different states, an initial and a final one of a gas and evaluate the change in volume as a function of temperature or vice versa, you can use the expression:

In this case:
- V1= 5.76 L
- T1= 22 °C= 295 °K (Being 0°C=273°K)
- V2=17.28 L
- T2=?
Replacing:

Solving:

T2= 885 °K = 612 °C
<u><em>The final temperature was 612 °C</em></u>