Answer:
Heat energy required (Q) = 10.736 KJ
Explanation:
Given:
Specific heat of ethanol (C) = 2.44 J/g °C
Mass of ethanol (M) = 50 gram
Initial temperature (T1) = -20°C
Final temperature (T1) = 68°C
Find:
Heat energy required (Q) = ?
Computation:
Change in temperature (ΔT) = 68°C - (-20°C)
Change in temperature (ΔT) = 88°C
Heat energy required (Q) = mC(ΔT)
Heat energy required (Q) = (50)(2.44)(88)
Heat energy required (Q) = 10,736 J
Heat energy required (Q) = 10.736 KJ
Answer:
Your answer is B, Electrochemistry!
Explanation:
This is the part of chemistry that studies the chemical process in which electrons flow. This flow is called electricity. Electricity is generated by the flow of electrons, from one element to another element. This reaction is called oxidation reduction.
Answer:
Acid-base indicators are generally weak proteolytic that change color in solution according to the pH. The acid-base equilibrium of a weak acid type of indicator (HI) in water can be represented as. [I] The acid, HI, and the conjugate base, I−, have different colors. The equilibrium expression for this process is.
Answer:
a. 750Hz, b. 4.0ppm, c. 600Hz
Explanation:
The Downfield Shift (Hz) is given by the formula
Downfield Shift (Hz) = Chemical Shift (ppm) x Spectrometer Frequency (Hz)
Using the above formula we can solve all three parts easily
a. fspec = 300 MHz, Chem. Shift = 2.5ppm, 1MHz = 10⁶ Hz, 1ppm (parts per million) = 10⁻⁶
Downfield Shift (Hz) = 2.5ppm x 300MHz x (1Hz/10⁶MHz) x (10⁻⁶/1ppm)
Downfield Shift = 750 Hz
The signal is at 750Hz Downfield from TMS
b. Downfield Shift = 1200 Hz, Chemical Shift = ?
Chemical Shift = Downfield shift/Spectrometer Frequency
Chemical Shift = (1200Hz/300MHz) x (1ppm/10⁻⁶) = 4.0 ppm
The signal comes at 4.0 ppm
c. Separation of 2ppm, Downfield Shift = ?
Downfield Shift (Hz) = 2(ppm) x 300 (MHz) x (1Hz/10⁶MHz) x (10⁻⁶/1ppm) = 600 Hz
The two peaks are separated by 600Hz
The answer is C,growth spurts,puberty,& sexual maturity