Answer:
2726.85 °C
Explanation:
Given data:
Initial pressure = 565 torr
Initial temperature = 27°C
Final temperature = ?
Final pressure = 5650 torr
Solution:
Initial temperature = 27°C (27+273 = 300 K)
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
T₂ = P₂T₁ /P₁
T₂ = 5650 torr × 300 K / 565 torr
T₂ = 1695000 torr. K /565 torr
T₂
= 3000 K
Kelvin to degree Celsius:
3000 K - 273.15 = 2726.85 °C
Answer:

Explanation:
We know, 
where, R = 0.0821 L.atm/(mol.K), T is temperature in kelvin and
is difference in sum of stoichiometric coefficient of products and reactants
Here
and T = 311 K
So, ![K_{p}=(0.0111)\times [(0.0821L.atm.mol^{-1}.K^{-1})\times 311K]^{-1}=4.35\times 10^{-4}](https://tex.z-dn.net/?f=K_%7Bp%7D%3D%280.0111%29%5Ctimes%20%5B%280.0821L.atm.mol%5E%7B-1%7D.K%5E%7B-1%7D%29%5Ctimes%20311K%5D%5E%7B-1%7D%3D4.35%5Ctimes%2010%5E%7B-4%7D)
Hence value of equilibrium constant in terms of partial pressure
is 
Answer:
1.25mole of Mg(OH)₂
Explanation:
The reaction is between Mg(OH)₂ and HCl, this is a neutralization reaction between an acid and a base.
Mg(OH)₂ + 2HCl → MgCl₂ + 2H₂O
The balanced reaction equation is given above.
2 mole of HCl reacts with 1 mole of Mg(OH)₂
So, 2.5mole of HCl will react with
= 1.25mole of Mg(OH)₂
The number of moles of Mg(OH)₂ is given as 1.25mol
In your choices, the best answer is the mass of the reactants and the mass of the products are no equal. The chemical equilibrium can take place in a close system and can not be affected by catalyst and is a reversible reaction. The best describe should be the concentration of reactants and products are constant.