The answer to this question would be: resistance
When a patient developing a resistance to a certain drug, the same amount of doses will not exert the same effect as before. The effect will be lower, thus the doctor will need to increase the dose to increase the effect
The simplified model of the hall effect proved that the current (electric) in metals are carried by electrons and not protons. The hall effect introduced the hall coefficient which is the ratio of the induced electric field to the current density x applied magnetic field. This coefficient is unique for each type of metal.
Answer:
B.) An atom of arsenic has one more valence electron and more electron shells than an atom of silicon, so the conductivity decreases because the arsenic atom loses the electron.
Explanation:
Silicon is located in the 3rd row and 14th column in the periodic table. Arsenic is located in the 4th row and 15th column in the periodic table. This means that arsenic has one more valence electron than silicon. Since arsenic is located one row down from silicon, its valence electrons occupy higher energy orbitals.
Silicon maintains a crystal-like lattice structure. Each silicon atom is covalently connected to assume this shape. When silicon gains one extra electron from arsenic, it experiences n-type doping. This new electron is not tightly bound in the lattice structure. This allows it to move more freely and conduct more electricity. This can also be explained using band gaps. Silicon, which previously had an empty conduction band, now has one electron in this band. This lowers the band gap between the conduction and valence bands and increases conductivity.
Chemical<span> reactions takes place in plants and animals, this result in the formation of substances in some plants and animals that can be used to treat illness. </span>Chemistry<span>is </span>important<span> to everyday </span>life<span>, because it provides medicine. The food we consume each day comes directly from </span>chemical<span> processes.</span>