Chemical reaction: Ba(NO₃)₂ + H₂SO₄ → BaSO₄ + 2HNO₃.
V(H₂SO₄) = 250 mL ÷ 1000 mL/L = 0,25 L.
m(BaSO₄) = 0,55 g.
n(BaSO₄) = m(BaSO₄) ÷ M(BaSO₄).
n(BaSO₄) = 0,55 g ÷ 233,38 g/mol.
n(BaSO₄) = 0,00235 mol.
From chemical reaction: n(BaSO₄) : n(Ba(NO₃)₂) = 1 : 1.
n(Ba(NO₃)₂) = 0,00235 mol.
c(Ba(NO₃)₂) = n(Ba(NO₃)₂) ÷ V.
c(Ba(NO₃)₂) = 0,00235 mol ÷ 0,25 L.
c(Ba(NO₃)₂) = 0,0095 mol/L.
Answer:
A. Protons are positive and carry a charge of +1
B. Neutrons are neutral so carry a charge of 0
C. Electrons are negative and carry a charge of -1
Explanation:
<u>Polar covalent bonding is the type of the chemical bond in which the pair of the electrons is unequally shared between the two atoms.</u> As a result, the atom with higher value of electronegativity acquires a slightly negative charge and the atom with lower value of electronegativity acquires a slightly positive charge.
In the molecule of
, the bond which is closest to ionic end of bond spectrum is <u>N-H bond</u> because the nitrogen atom is more electronegative than hydrogen and is ionic in nature.
In the molecule of
, the bond which is closest to ionic end of bond spectrum is <u>no one</u> because there is not much difference between carbon and hydrogen for the bond to be said as ionic.
In the molecule of
, the bond which is closest to ionic end of bond spectrum is <u>O-H bond</u> because the oxygen atom is more electronegative than hydrogen and is ionic in nature.
Answer:
21.2 gm
Explanation:
calculate the mass of butane needed to produce 64.1 g of carbon dioxide to three significant figures and appropriate units
butane is the hydrocarbon C4H10
in combustion, we react hydrocarbons with O2 to form CO2 and H2O
so
C4H10 + O2----------------> CO2 + H2O
BALANCE
2C4H10 + 1302--------> 8CO2 + 10 H2O
the molar mass of CO2 is 12 + 16X2 = 44
64.1 gm of CO2 is
64.1/44 = 1.46 MOLES OF CO2,
FOR EVERY 8 MOLES OF CO2 WE NEED 2 MOLES OF BUTANE IT IS A
8:2 OR 4:1 RATIO. THE MOLES OF C4H10 ARE 1/4 THE MOLES OF CO2
SO
THE MOLES OF C4H10 H10 ARE 1.46/4 =0.365 MOLES
THE MOLAR MASS OF BUTANE IS 58.12
0.365 MOLES OF C4H10 HAS A MASS OF 0.365 X 58.12 = 21.2 gm
Answer:
-138.9 kJ/mol
Explanation:
Step 1: Convert 235.8°C to the Kelvin scale
We will use the following expression.
K = °C + 273.15 = 235.8°C + 273.15 = 509.0 K
Step 2: Calculate the standard enthalpy of reaction (ΔH°)
We will use the following expression.
ΔG° = ΔH° - T.ΔS°
ΔH° = ΔG° / T.ΔS°
ΔH° = (-936.92kJ/mol) / 509.0K × 0.51379 kJ/mol.K
ΔH° = -3.583 kJ (for 1 mole of balanced reaction)
Step 3: Convert -9.9°C to the Kelvin scale
K = °C + 273.15 = -9.9°C + 273.15 = 263.3 K
Step 4: Calculate ΔG° at 263.3 K
ΔG° = ΔH° - T.ΔS°
ΔG° = -3.583 kJ/mol - 263.3 K × 0.51379 kJ/mol.K
ΔG° = -138.9 kJ/mol