Answer:
The difference between the two is, well for one
Spectrum: The entire range that the "waves" could be such, as visible light, x-ray's and so on.
Waves: These are different because they aren't telling you or showing the entire spectrum just which they length that they are.
It may confuse you but it makes sense to me (Sorry)
Explanation:
A) 1 rev = 2π rad. Using this ratio, you can find the rad/s: 1160 rev/min x 2π rad/rev x 1 min/60 s = 121.5 rad/s
b) You can find linear speed from angular speed using this equation (note the radius is half the diameter given in the question): v = ωr = 121.5 rad/s x 1.175 m = 142.8 m/s
c) You can find centripetal acceleration using this equation: a = v^2/r = (142.8 m/s)^2 / 1.175 m = 17 355 m/s^2
The displacement of the train after 2.23 seconds is 25.4 m.
<h3>
Resultant velocity of the train</h3>
The resultant velocity of the train is calculated as follows;
R² = vi² + vf² - 2vivf cos(θ)
where;
- θ is the angle between the velocity = (90 - 51) + 37 = 76⁰
R² = 8.81² + 9.66² - 2(8.81 x 9.66) cos(76)
R² = 129.75
R = √129.75
R = 11.39 m/s
<h3>Displacement of the train</h3>
Δx = vt
Δx = 11.39 m/s x 2.23 s
Δx = 25.4 m
Thus, the displacement of the train after 2.23 seconds is 25.4 m.
Learn more about displacement here: brainly.com/question/2109763
#SPJ1
The net force acting on the car is 65 N to the left
The net force acting on an object is simply defined as the resultant force acting on the object.
From the question given, we obtained the following data:
- Force applied to the right (Fᵣ) = 250 N
- Force applied to the left (Fₗ) = 315 N
- Net force (Fₙ) =?
The net force acting on the car can be obtained as follow:
Fₙ = Fₗ – Fᵣ
Fₙ = 315 – 250
<h3>Fₙ = 65 N to the left </h3>
Therefore, the net force acting on the car is 65 N to the left
Learn more on net force: brainly.com/question/19549734
Answer:
V=27.24 m/s
Explanation:
We need to apply the linear momentum conservation theorem:

The velocity of the eagle its defined by its two components:


because speed is a scalar value:
