Answer:
The answer is a TRANSLATION TOOL or D
Explanation:
Given
m1(mass of the first object): 55 Kg
m2 (mass of the second object): 55 Kg
v1 (velocity of the first object): 4.5 m/s
v2 (velocity of the second object): ?
m3(mass of the object dropped): 2.5 Kg
The law of conservation of momentum states that when two bodies collide with each other, the momentum of the two bodies before the collision is equal to the momentum after the collision. This can be mathemetaically represented as below:
Pa= Pb
Where Pa is the momentum before collision and Pb is the momentum after collision.
Now applying this law for the above problem we get
Momentum before collision= momentum after collision.
Momentum before collision = (m1+m2) x v1 =(55+5)x 4.5 = 270 Kgm/s
Momentum after collision = (m1+m2+m3) x v2 =(55+5+2.5) x v2
Now we know that Momentum before collision= momentum after collision.
Hence we get
270 = 62.5 v2
v2 = 4.32 m/s
B. move away from the mercury and notify the teacher :)
you should never use a broom to sweep mercury, it breaks the mercury in smaller droplets and spread them.
Pouring the mercury in the sink would likely be logged in the plumbing. and pickingthings up with the napkin may cause contamination and cuts from the glass.
Speed is a derived term that is the result when distance or displacement is divided by unit time. Speed is a scalar unit which means it only includes magnitude not direction, thus always positive. The answer thus are the three choices given above.
Answer:
42.3 MV
Explanation:
d = diameter of the metal sphere = 2.15 m
r = radius of the metal sphere
diameter of the metal sphere is given as
d = 2r
2.15 = 2 r
r = 1.075 m
Q = charge on sphere = 5.05 mC = 5.05 x 10⁻³ C
Potential near the surface is given as


V = 4.23 x 10⁷ volts
V = 42.3 MV