Answer:
Yes such a frame exists: a free-fall (free-float frame) frame. This frame of reference is subject only to gravity and no forces such as electromagnetic forces or nuclear forces.
When you are in free fall, the force of gravity is stronger than your velocity perpendicular to where you're falling, and you move at a constant speed downwards.
Under feelings of weightlessness, you are still being pulled by gravity, but your perpendicular velocity and distance from the source can cancel each other out.
Run inside if you are outdoors
.
Answer:
Your answer should be A. 0.25 J and moving to the right
Explanation:
Answer:
16.4287
Explanation:
The force and displacement are related by Hooke's law:
F = kΔx
The period of oscillation of a spring/mass system is:
T = 2π√(m/k)
First, find the value of k:
F = kΔx
78 N = k (98 m)
k = 0.796 N/m
Next, find the mass of the unknown weight.
F = kΔx
m (9.8 m/s²) = (0.796 N/m) (67 m)
m = 5.44 kg
Finally, find the period.
T = 2π√(m/k)
T = 2π√(5.44 kg / 0.796 N/m)
T = 16.4287 s