Let's start by using the mirror equation:

where f=10 cm is the focal lenght of the mirror, d=38 cm is the distance of the object from the mirror, while q is the distance of the image from the mirror.
For the sign convention, f is taken as positive for a concave mirror. Therefore, we can solve the equation for q:

from which we find q=13.6 cm.
The fact that q is positive means that the image is
real, so it is on the same side of the object, with respect to the mirror.
Then we can also find the size of the image with respect to the original object. The magnification is given by

The negative sign means that the image is
inverted, and the size of the image is 0.36 times the size of the object.
The wavelength of the wave is given by the letter A. And the amplitude of the wave is given by the letter B.
Let
A = the amplitude of vibration
k = the spring constant
m = the mass of the object
The displacement at time, t, is of the form
x(t) = A cos(ωt)
where
ω = the circular frequency.
The velocity is
v(t) = -ωA sin(ωt)
The maximum velocity occurs when the sin function is either 1 or -1.
Therefore

Therefore

The KE (kinetic energy) is given by

The PE (potential energy) is given by

When the KE and PE are equal, then

For the oscillating spring,

Therefore

Answer:
<span>The life forms of the biosphere are located within Earth's surface.</span>