Answer:
Isovolumic
Explanation:
In thermodynamics, the process whereby A real gas is changed slowly from state 1 to state 2 and in this process there's no work done on or by the gas is called Isovolumic process.
Answer:
Explanation:
Sam mass=75kg
Height is 50m
20° frictionless slope
Horizontal force on Sam is 200N
According to the work energy theorem, the net work done on Sam will be equal to his change in kinetic energy.
Therefore
Wg - Ww =∆K.E
Note initial the body was at rest at top of the slope.
Then, ∆K.E is K.E(final) - K.E(initial)
K.E Is given as ½mv²
Since initial velocity is zero then, K.E(initial ) is zero
Therefore, ∆K.E=½mVf²
Wg is work done by gravity and it is given by using P.E formulas
Wg=mgh
Wg=75×9.8×50
Wg=36750J
Ww is work done by wind and it's is given by using formulae for work
Work=force × distance
Ww=horizontal force × horizontal distance
Using Trig.
TanX=opposite/adjacent
Tan20=h/x
x=h/tan20
x=50/tan20
x=137.37m
Then,
Ww=F×x
Ww=200×137.37
We=27474J
Now applying the formula
Wg - Ww =∆K.E
36750 - 27474 =½×75×Vf²
9276=37.5Vf²
Vf²=9275/37.5
Vf²= 247.36
Vf=√247.36
Vf=15.73m/s
One is the best choice for an answer.
Answer:he curve changes noticeably about 7.5 billion years ago,
Explanation: when objects in the universe began flying apart as a faster rate. Astronomers theorize that the faster expansion rate is due to a mysterious, dark force that is pulling galaxies apart. One explanation for dark energy is that it is a property of space
Wellll, let me think about that ...
I don't think I'd agree that you can characterize the amplitude of
a wave according to the density at only one point in it. After all ...
a tiny wave in steel would be much denser at a compression than
a huge wave in air would be.
The amplitude of any wave is described as the difference between
a peak and the resting value. Or even better ... half of the difference
between a maximum and a minimum.
So if you're looking at a longitudinal wave, like sound, I'd say if you
want to describe its amplitude, then you have to look at the density
at two points ... either the difference between the compression and
the resting densities, or the difference between the greatest compression
and the greatest rarefaction.
That's my opinion. I could be wrong.