Answer:
54 days
Explanation:
We have to use the formula;
0.693/t1/2 =2.303/t log Ao/A
Where;
t1/2= half-life of phosphorus-32= 14.3 days
t= time taken for the activity to fall to 7.34% of its original value
Ao=initial activity of phosphorus-32
A= activity of phosphorus-32 after a time t
Note that;
A=0.0734Ao (the activity of the sample decreased to 7.34% of the activity of the original sample)
Substituting values;
0.693/14.3 = 2.303/t log Ao/0.0734Ao
0.693/14.3 = 2.303/t log 1/0.0734
0.693/14.3 = 2.6/t
0.048=2.6/t
t= 2.6/0.048
t= 54 days
The answer is c. because you have to increase concentration of h2
I think this the the list of choices relating to the above question.
reaction rate
<span>activation energy </span>
<span>collision theory </span>
<span>spontaneous reaction
</span>
The term that best relate to ben's observation is REACTION RATE.
Reaction rate is defined as the speed at which the chemical reaction proceeds. It either is the amount of concentration of a product in a given unit of time or the concentration of the reactant that is being consumed in a unit of time.
Because lager objects have much more room for mass the smaller objects. take the earth as an example the earth is very big and has alot of mass in it which makes gravity that pulls us down when we jump up.