1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Thepotemich [5.8K]
3 years ago
10

The current drawn by fluorescent lighting has a high total harmonic distortion. For this case, THD is calculated to be 88%. The

true power factor is measured to be 0.72 lagging. What is the displacement power factor (ie. if all harmonics could be filtered out)? Assume the source voltage waveform is undistorted.
Engineering
1 answer:
Alona [7]3 years ago
3 0

Answer:

displacement power factor is 0.959087

Explanation:

given data

THD = 88%

true power factor = 0.72

solution

we get here total harmonic distribution THD is express as here

THD = \sqrt{\frac{1}{g^2}-1}       ..............1

her g is distortion factor

so put here value and we will get g that is

0.88² =   \frac{1}{g^2} -1    

solve it we get

g = 0.750714

and

displacement power factor is express as

DPF = \frac{PF}{g}   .................2  

put here value and we will get

DPF = \frac{0.72}{0.750714}    

DPF  = 0.959087

You might be interested in
The wheel and the attached reel have a combined weight of 50lb and a radius of gyration about their center of 6 A k in = . If pu
marishachu [46]

The complete question is;

The wheel and the attached reel have a combined weight of 50 lb and a radius of gyration about their center of ka = 6 in. If pulley B that is attached to the motor is subjected to a torque of M = 50 lb.ft, determine the velocity of the 200lb crate after the pulley has turned 5 revolutions. Neglect the mass of the pulley.

The image of this system is attached.

Answer:

Velocity = 11.8 ft/s

Explanation:

Since the wheel at A rotates about a fixed axis, then;

v_c = ω•r_c

r_c is 4.5 in. Let's convert it to ft.

So, r_c = 4.5/12 ft = 0.375 ft

Thus;

v_c = 0.375ω

Now the mass moment of inertia about of wheel A about it's mass centre is given as;

I_a = m•(k_a)²

The mass in in lb, so let's convert to slug. So, m = 50/32.2 slug = 1.5528 slug

Also, let's convert ka from inches to ft.

So, ka = 6/12 = 0.5

So,I_a = 1.5528 × 0.5²

I_a = 0.388 slug.ft²

The kinetic energy of the system would be;

T = Ta + Tc

Where; Ta = ½•I_a•ω²

And Tc = ½•m_c•(v_c)²

So, T = ½•I_a•ω² + ½•m_c•(v_c)²

Now, m_c is given as 200 lb.

Converting to slug, we have;

m_c = (200/32.2) slugs

Plugging in the relevant values, we have;

T = (½•0.388•ω²) + (½•(200/32.2)•(0.375ω)²)

This now gives;

T = 0.6307 ω²

The system is initially at rest at T1 = 0.

Resolving forces at A, we have; Ax, Ay and Wa. These 3 forces do no work.

Whereas at B, M does positive work and at C, W_c does negative work.

When pulley B rotates, it has an angle of; θ_b = 5 revs × 2π rad/revs = 10π

While the wheel rotates through an angle of;θ_a = (rb/ra) • θ_b

Where, rb = 3 in = 3/12 ft = 0.25 ft

ra = 7.5 in = 7.5/12 ft = 0.625 ft

So, θ_a = (0.25/0.625) × 10π

θ_a = 4π

Thus, we can say that the crate will have am upward displacement through a distance;

s_c = r_c × θ_a = 0.375 × 4π

s_c = 1.5π ft

So, the work done by M is;

U_m = M × θ_b

U_m = 50lb × 10π

U_m = 500π

Also,the work done by W_c is;

U_Wc = -W_c × s_c = -200lb × 1.5π

U_Wc = -300π

From principle of work and energy;

T1 + (U_m + U_Wc) = T

Since T1 is zero as stated earlier,

Thus ;

0 + 500π - 300π = 0.6307 ω²

0.6307ω² = 200π

ω² = 200π/0.6307

ω² = 996.224

ω = √996.224

ω = 31.56 rad/s

We earlier derived that;v_c = 0.375ω

Thus; v_c = 0.375 × 31.56

v_c = 11.8 ft/s

3 0
4 years ago
How to draw the output voltage waveform rectifier
tatyana61 [14]

Answer:

Half-wave rectifier converts an AC signal into a DC signal. It's called a half-wave because it only rectify the positive part of an AC signal.

AC Signal = An electrical signal that alternates between positive and negative voltage.

DC Signal = An electrical signal that only has positive voltage.

Rectify = A fancy word for converting something.

Adding a capacitor helps the positive part of the signal stay on longer. This work because the capacitor stores energy kinda like a battery. During the negative part of the AC signal, the energy stored in the capacitor will be drained and used, then the cycle repeats.

The load resistor is just there to prevent a short circuit from happening.

7 0
3 years ago
The human eye, as well as the light-sensitive chemicals on color photographic film, respond differently to light sources with di
jeka57 [31]

Answer:

a) at T = 5800 k  

  band emission = 0.2261

at T = 2900 k

  band emission = 0.0442

b) daylight (d) = 0.50 μm

    Incandescent ( i ) =  1 μm

Explanation:

To Calculate the band emission fractions we will apply the Wien's displacement Law

The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as

F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )

<em>Values are gotten from the table named: blackbody radiati</em>on functions

<u>a) Calculate the band emission fractions for the visible region</u>

at T = 5800 k  

  band emission = 0.2261

at T = 2900 k

  band emission = 0.0442

attached below is a detailed solution to the problem

<u>b)calculate wavelength corresponding to the maximum spectral intensity</u>

For daylight ( d ) = 2898 μm *k / 5800 k  = 0.50 μm

For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm

3 0
3 years ago
What type of spring is mounted on a mcpherson strut suspension system?
AysviL [449]

Answer:

Coil Spring

Explanation:

6 0
2 years ago
Compressed Air In a piston-cylinder device, 10 gr of air is compressed isentropically. The air is initially at 27 °C and 110 kPa
Helen [10]

Answer:

(a) 2.39 MPa (b) 3.03 kJ (c) 3.035 kJ

Explanation:

Solution

Recall that:

A 10 gr of air is compressed isentropically

The initial air is at = 27 °C, 110 kPa

After compression air is at = a450 °C

For air,  R=287 J/kg.K

cv = 716.5 J/kg.K

y = 1.4

Now,

(a) W efind the pressure on [MPa]

Thus,

T₂/T₁ = (p₂/p₁)^r-1/r

=(450 + 273)/27 + 273) =

=(p₂/110) ^0.4/1.4

p₂ becomes  2390.3 kPa

So, p₂ = 2.39 MPa

(b) For the increase in total internal energy, is given below:

ΔU = mCv (T₂ - T₁)

=(10/100) (716.5) (450 -27)

ΔU =3030 J

ΔU =3.03 kJ

(c) The next step is to find the total work needed in kJ

ΔW = mR ( (T₂ - T₁) / k- 1

(10/100) (287) (450 -27)/1.4 -1

ΔW = 3035 J

Hence, the total work required is = 3.035 kJ

4 0
4 years ago
Other questions:
  • Explain about Absolute viscosity, kinematic viscosity and SUS?
    11·1 answer
  • Refrigerant-134a enters a diffuser steadily as saturated vapor at 600 kPa with a velocity of 160 m/s, and it leaves at 700 kPa a
    10·2 answers
  • The solid cylinders AB and BC are bonded together at B and are attached to fixed supports at A and C. The modulus of rigidity is
    6·1 answer
  • A process involves the removal of oil and other liquid contaminants from metal parts using a heat-treat oven, which has a volume
    10·1 answer
  • Why do electricians require critical thinking skills? In order to logically identify alternative solutions to problems in order
    8·1 answer
  • Consider a 0.15-mm-diameter air bubble in a liquid. Determine the pressure difference between the inside and outside of the air
    10·1 answer
  • How long should the shafts remain in the furnace to achieve a desired centerline temperature of 800K? 2) Determine the temperatu
    5·1 answer
  • A tailgate may have a latch on both sides.<br> O True<br> O False
    10·2 answers
  • How to Cancel prescription
    12·1 answer
  • Which of the following can cause a flopping sound at the front of the engine
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!