1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilya [14]
3 years ago
12

Which is a key criterion for the design of an automobile bumper?

Physics
1 answer:
Mrac [35]3 years ago
3 0

Answer: The answer is A

Explanation: The bumper is the first part of an automobile to be impacted when in a head-on accident

You might be interested in
PLZ HELP WILL GIVE BRAINLIEST
xxTIMURxx [149]

Answer:

12.7m/s

Explanation:

Given parameters:

Mass of the diver = 77kg

Height  = 8.18m

Unknown:

Final velocity  = ?

Solution:

To solve this problem, we use one of the motion equations.

            v²  = u² + 2gh

v is the final velocity

u is the initial velocity

g is the acceleration due to gravity

h is the height

             v² = 0² + (2 x 9.8 x 8.18)

             v² = 160.3

             v = 12.7m/s

7 0
3 years ago
A spherically-spreading EM wave comes from a 104.0 W source. At a distance of 9.6 m, what is the intensity of the wave?
Nookie1986 [14]

Answer:

Approximately 0.0898 W/m².

Explanation:

The intensity of light measures the power that the light delivers per unit area.

The source in this question delivers a constant power of \rm 104.0\; W. If the source here is a point source, that \rm 104.0\; W of power will be spread out evenly over a spherical surface that is centered at the point source. In this case, the radius of the surface will be 9.6 meters.

The surface area of a sphere of radius r is equal to 4\pi r^{2}. For the imaginary 9.6-meter sphere here, the surface area will be:

\rm 4\pi \times (9.6\; m)^{2} \approx 1158.12\; m^{2}.

That \rm 104.0\; W power is spread out evenly over this 9.6-meter sphere. The power delivered per unit area will be:

\displaystyle\rm  \frac{104.0\; W}{1158.12\; m^{2}}\approx 0.0898\; W\cdot m^{-2}.

8 0
3 years ago
A physics teacher performing an outdoor demonstration suddenly falls from rest off a high cliff and simultaneously shouts "Help"
Digiron [165]

Answer: a) The cliff is 532.05m high

b) Her speed just before hitting the ground is 102.12 m/s

Explanation: To solve This, I'll use a sketch diagram, attached to this solution,

In 3seconds, the teacher heard the echo of her initial scream back. We can obtain the distance the teacher had fallen at the end of 3 seconds using the equations of motion,

Y1 = ut + 0.5g(t^2)

Since she's falling under the influence of gravity, her initial velocity, u = 0m/s, g = 9.8m/s2, t = 3s

Y1, distance she fell through in 3 seconds = 0.5×9.8(3^2) = 44.1m

Let the total height of the cliff be (44.1 + x); where is the remaining height of cliff that the teacher will fall through.

Using the equations of motion again, we can obtain distance travelled by the sound waves in 3s. sound waves travel with a constant speed of 340m/s, no acceleration,

Y2 = ut + 0.5g(t^2) where g = 0, u = 340m/s, t = 3seconds

Y2 = 340 × 3 = 1020m

But in 3 secs, the sound waves would have travelled through the total height of the cliff (44.1 + x) and back to the teacher's current height, x. That is, 1020 = 44.1 + x + x

x = 487.95m

So, total height of cliff = 44.1 + 487.95 = 532.05m

b) the speed of the teacher just before she hits the ground.

Using the equations of motion again,

(V^2) = (U^2) + 2gs

Where v is the final velocity to be calculated

U is the initial velocity = 0m/s

g is acceleration due to gravity = 9.8m/s2

S is the total height she fell through, that is, the height of the cliff = 532.05m

(V^2) = 0 + 2×9.8×532.05 = 10428.18

V = √(10428.18) = 102.12m/s

QED!

4 0
3 years ago
An astronaut has a momentum of 280 kg and travels 10 m/s. what is the mass of the astronaut?
Kamila [148]

Answer:

The answer is

<h2>28 kg</h2>

Explanation:

The mass of an object given it's momentum and velocity / speed can be found by using the formula

m =  \frac{p}{v}  \\

where

m is the mass

p is the momentum

v is the speed or velocity

From the question

p = 280 kg/ms

v = 10 m/s

The mass of the object is

m =  \frac{280}{10}  = 28 \\

We have the final answer as

<h3>28 kg</h3>

Hope this helps you

3 0
3 years ago
What happens to the temperature during an endothermic reaction? ANSWERS; The temperature stays constant. The temperature will de
EleoNora [17]

Answer:

The temperature will decrease (get colder).

Explanation:

Enthalpy changes are heat changes accompanying physical and chemical changes. The enthalpy change is the difference between the sum of the heat contents of products and the sum of heat contents of reactants.

  • For an endothermic change, heat is absorbed for the reaction.
  • The surrounding becomes colder at the end of the reaction and so is the reaction itself.
  • The right choice is that the temperature will decrease.
6 0
3 years ago
Other questions:
  • A virtual image formed by a concave mirror is always enlarged. O True O False
    12·1 answer
  • What type of lever is shown below?
    15·1 answer
  • (a) How much gravitational potential energy (relative to the ground on which it is built) is stored in the Great Pyramid of Cheo
    12·1 answer
  • What is the diameter of the sun
    5·2 answers
  • Please help i need an explanation
    5·1 answer
  • What quantity measures the amount of space an object occupies?
    7·1 answer
  • Please help me!
    13·1 answer
  • Two parallel circular rings of radius R have their centres in the X axis separated by a distance L. If each ring carries a unifo
    15·1 answer
  • Proverbs from taiwanese<br><br>water can help a boat float, but it can also sink it​
    11·2 answers
  • From what three regions do most of the small objects in the universe come?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!