Answer:
vₓ = xg/2y
Explanation:
In this question, let us find the time it takes for the ball on the right that has zero initial velocity to reach the ground.
By newton equation of motion we know that
y = v₀ t - ½ g t²
t = 2y / g
This is the time it takes for the ball on the right to reach the ground; at this time the ball on the left travels a distance
vₓ = x/t
vₓ = xg/2y
vₓ = xg/2y
Where we assume that x and y are known.
Answer:
Explanation:
24 - gauge wire , diameter = .51 mm .
Resistivity of copper ρ = 1.72 x 10⁻⁸ ohm-m
R = ρ l / s
1.72x 10⁻⁸ / [3.14 x( .51/2)² x 10⁻⁶ ]
= 8.42 x 10⁻² ohm
= .084 ohm
B ) Current required through this wire
= 12 / .084 A
= 142.85 A
C )
Let required length be l
resistance = .084 l
2 = 12 / .084 l
l = 12 / (2 x .084)
= 71.42 m
Because an object in rest stays in rest until an unequal force pushes it so gravity is pushing on the egg making it drop
If a boat is going East at 15mph and there is a water current going southeast at 45° then the boat is being drifted southward. So since the current is going at an angle then it has a x and y component. So Rx refers to the x-component force of the current and Ry refers to the y-component of the current, and |R| refers to the magnitude of these forces.
Spacecraft used is "Friendship 7". Hope it helps.