Answer:
The energy absorbed by a hydrogen atom is 1.549 X10⁻¹⁹ J
Explanation:
Using Bohr's equation; the energy absorbed by the hydrogen atom can be calculated as follows:

When an electron moves from a lower energy level to a higher energy level, energy is absorbed by the atom.
Lower energy level (n₂) = 3
Higher energy level (n₁) = 5
1 eV = 1.602X10⁻¹⁹ C

ΔE = 1.549 X10⁻¹⁹J
The energy absorbed by a hydrogen atom to transition an electron from n = 3 to n = 5 is 1.549 X10⁻¹⁹ J
Answer:
4.47 m/s.
Explanation:
distance traveled, d = 10 miles
time, t = 1 hour
Speed of the runner, v = d / t
Speed of the runner = 10 miles / 1
Speed of the runner = 10 mph
1 mph ----------------------- 0.44704 m/s
10 mph -----------------------?
= 4.47 m/s
Thus, in 2 hours the distance traveled will change but the speed it still 10 mph or 4.47 m/s.
Answer:
False
Explanation:
Atomic mass (Also called Atomic Weight, although this denomination is incorrect, since the mass is property of the body and the weight depends on the gravity) Mass of an atom corresponding to a certain chemical element). The uma (u) is usually used as a unit of measure. Where u.m.a are acronyms that mean "unit of atomic mass". This unit is also usually called Dalton (Da) in honor of the English chemist John Dalton.
It is equivalent to one twelfth of the mass of the nucleus of the most abundant isotope of carbon, carbon-12. It corresponds roughly to the mass of a proton (or a hydrogen atom). It is abbreviated as "uma", although it can also be found by its English acronym "amu" (Atomic Mass Unit). However, the recommended symbol is simply "u".
<u>
The atomic masses of the chemical elements are usually calculated with the weighted average of the masses of the different isotopes of each element taking into account the relative abundance of each of them</u>, which explains the non-correspondence between the atomic mass in umas, of an element, and the number of nucleons that harbors the nucleus of its most common isotope.
Answer:
following are the solution to this question:
Explanation:
When I stand at such a scale in an elevated that's already rising upwards, its scale would appear to also be 0 because of free fall and would often reveal that weight whenever the lift is stable.
In this, the free fall is also known as the object, that is influenced exclusively by gravity, and an object operating only through the influence of gravity is said to be in a free-fall state.