A) We differentiate the expression for velocity to obtain an expression for acceleration:
v(t) = 1 - sin(2πt)
dv/dt = -2πcos(2πt)
a = -2πcos(2πt)
b) Any value of t can be plugged in as long as it is greater than or equal to 0.
c) we integrate the expression of velocity to find an expression for displacement:
∫v(t) dt = ∫ 1 - sin(2πt) dt
x(t) = t + cos(2πt)/2π + c
x(0) = 0
0 = = + cos(0)/2π + c
c = -1/2π
x(t) = t + cos(2πt)/2π -1/2π
Answer:
A line of symmetry is a line that separates a shape into two identical halves.
Rotational symmetry is the same thing except when you rotate the object, it has to have the exact same line of symmetry.
<u><em>Hope this helps!!!</em></u>
Answer:
D: Increase the distance between the objects.
E: Decrease the mass of one of the objects.
Answer: idk that is a tough one!
Explanation: that is a hard question IDK
The main formula to be used here is
Force = (mass) x (acceleration).
We'll get to work in just a second. But first, I must confess to you that I see
two things happening here, and I only know how to handle one of them. So
my answer will be incomplete, but I believe it will be more reliable than the
first answer that was previously offered here.
On the <u>right</u> side ... where the 2 kg and the 3 kg are hanging over the same
pulley, those weights are not balanced, so the 3 kg will pull the 2kg down, with
some acceleration. I don't know what to do with that, because . . .
At the <em>same time</em>, both of those will be pulled <u>up</u> by the 10 kg on the other side
of the upper pulley.
I think I can handle the 10 kg, and work out the acceleration that IT has.
Let's look at only the forces on the 10 kg:
-- The force of gravity is pulling it down, with the whatever the weight of 10 kg is.
-- At the same time, the rope is pulling it UP, with whatever the weight of 5 kg is ...
that's the weight of the two smaller blocks on the other end of the rope.
So, the net force on the 10 kg is the weight of (10 - 5) = 5 kg, downward.
The weight of 5 kg is (mass) x (gravity) = (5 x 9.8) = 49 newtons.
The acceleration of 10 kg, with 49 newtons of force on it, is
Acceleration = (force) / (mass) = 49/10 = <em>4.9 meters per second²</em>