Answer:
See the explanation below
Explanation:
Density is defined as the relationship between mass and volume, i.e. the following equation can be used:
density = m/v
where:
density [kg/m^3]
m = mass [kg]
v = volume [m^3]
If we change the volume of a body by reducing its size, its mass will also decrease proportionally with a density as seen in the equation.
m = density*v
To understand this concept more clearly, let's use the following example:
We know that the density of water is equal to 1000 [kg/m^3], that is, 1 cubic meter of water contains 1000 kilograms of water, using the equation.
1000 = m /1
m = 1000*1 = 1000 [kg]
Now if we have 500 kilograms of water, that would pass with the volume so that the density remains constant.
1000 = 500/v
v = 500/1000
v = 0.5 [m^3]
We can see that the volume of water has halved. Since the mass of water was reduced by half. That is, the relationship between mass and volume is proportional to the density of the material or substance.
3. In a uniform electric field, the equation for the magnitude of the magnetic field is E=(V/d). V= voltage d= distance. If the magnetic field magnitude is
constant , as stated in your problem, then the voltage must stay the same otherwise the value of "E" would change". And the problem already told us the "E" is uniform and so, not changing. Does that make sense?
4a. If the magnetic field lines are equally spaced apart, in other words share the same
density. Then we know that the magnitude of the magnetic field is unchanging. This is because the density of of the magnetic field lines(how many are in a certain area) is related to the magnitude being expressed by the electric field. Greater magnitude is expressed by the presence of more lines (higher line density)
4b. The electric potential is measured in Volts(V) and is uniform along the same equipotential line. What is an equipotential line(gray)? It is a line drawn perpendicular(forms a right angle with) to the magnetic field lines(black) to show the changes in electric potential. One space where electric potential will always be the same because it will always be equal to 0 Volts is exactly in between a positive and negative charges of equal charge value I have pointed to this line with a purple arrow in my picture.
I really hope this makes sense to you and that my pictures help! :)
F - False.
The law of conservation of momentum states that the total momentum is conserved.
Answer:
d. the same within the uncertainty of each measurement method
Explanation:
The density of an object and in general any physical property, has the same value regardless of the method used to measure it, either directly or indirectly. Since two completely different valid methods are used, the results must be the same, taking into account the level of precision of each of the methods.