They travel like waves. Just throw rock at lake you will see wave. When it bumps to barrier barrier reflects some part of it . Not like a line lika a wave
I'm not from that school but I can help you.
It is customary to work in SI units.
Calculate the volume of the concrete.
V = 3.7*2.1*5.8 cm³ = 45.066 cm³ = 45.066 x 10 ⁻⁶ m³
The mass is 43.8 g = 43.8 x 10⁻³ kg
The density is mass/volume.
Density = (43.8 x 10⁻³ kg)/(45.066 x 10⁻⁶ m³) = 971.9 kg/m³
Answer: 971.9 kg/m³
Correct matching:
1 acceleration -->
rate of change in velocity, which is the change in velocity divided by the change in time
2. speed --> the rate at which an object changes position when traveling in a certain direction
4. gravity --> force of attraction between all masses in the universe
5. Inertia --> an object´s resistance to a change in motion
3. friction --> force of resistance acting between objects in contact and tending to dampen their motion
6. velocity --> the rate at which an object changes position
Answer:
F₂= 210 pounds
Explanation:
Conceptual analysis
Hooke's law
Hooke's law establishes that the elongation (x) of a spring is directly proportional to the magnitude of force (F) applied to it, provided that said spring is not permanently deformed:
F= K*x Formula (1)
Where;
F is the magnitude of the force applied to the spring in Newtons (Pounds)
K is the elastic spring constant, which relates force and elongation. The higher its value, the more work it will cost to stretch the spring. (Pounds/inch)
x the elongation of the spring (inch)
Data
The data given is incorrect because if we apply them the answer would be illogical.
The correct data are as follows:
F₁ =80 pounds
x₁= 8 inches
x₂= 21 inches
Problem development
We replace data in formula 1 to calculate K :
F₁= K*x₁
K=( F₁) / (x₁)
K=( 80) / (8) = 10 pounds/ inche
We apply The formula 1 to calculate F₂
F₂= K*x₂
F₂= (10)*(21)
F₂= 210 pounds