Answer:

Explanation:
Using Kepler's third law, we can relate the orbital periods of the planets and their average distances from the Sun, as follows:

Where
and
are the orbital periods of Mercury and Earth respectively. We have
and
. Replacing this and solving for

The first step of the scientific method is to MAKE OBSERVATIONS
<h3><u>Answer;</u></h3>
A. 4
<h3><u>Explanation;</u></h3>
- <em><u>The period of a wave or periodic time is the time taken for a complete oscillation to occur. </u></em>For example its is the time taken between two successive crests or troughs.
- <em><u>The beats or oscillation that occur in one second represents the frequency. Frequency is the number of complete oscillations or beats in one second in a wave.</u></em>
- Frequency, measured in Hertz is given by the reciprocal of the periodic time.
- Thus; <u><em>Frequency or beats per second = 1/(1/4) = 4</em></u>
- <u><em>Hence , 4 beats per second</em></u>
Barometer duhhhh what’s else a ruler
Answer:
Explanation:
Force on the electron = q ( v x B )
q = - 1.6 x 10⁻¹⁹
v = (5.9i−6.4j)×10⁴
B = (−0.63i+0.65j)
v x B = (5.9i−6.4j)×10⁴ x (−0.63i+0.65j)
= (3.835 - 4.032 ) x 10⁴ k
= - 1970 k
Force on the electron = q ( v x B )
= - 1.6 x 10⁻¹⁹ x -1970 k
= 3.152 x 10⁻¹⁶ k
z-component of the force on the electron
Fz = 3.152 x 10⁻¹⁶ N