Answer:
Explanation:
90 rpm = 90 / 60 rps
= 1.5 rps
= 1.5 x 2π rad /s
angular velocity of flywheel
ω = 3π rad /s
Let I be the moment of inertia of flywheel
kinetic energy = (1/2) I ω²
(1/2) I ω² = 10⁷ J
I = 2 x 10⁷ / ω²
=2 x 10⁷ / (3π)²
= 2.2538 x 10⁵ kg m²
Let radius of wheel be R
I = 1/2 M R² , M is mass of flywheel
= 1/2 πR² x t x d x R² , t is thickness , d is density of wheel .
1/2 πR⁴ x t x d = 2.2538 x 10⁵
R⁴ = 2 x 2.2538 x 10⁵ / πt d
= 4.5076 x 10⁵ / 3.14 x .1 x 7800
= 184
R= 3.683 m .
diameter = 7.366 m .
b ) centripetal accn required
= ω² R
= 9π² x 3.683
= 326.816 m /s²
Answer:
Explanation:
Speed given = 125 m /min
125 /60 m /s
In 450 second it will travel
= 450 x 125 / 60
=937.5 m.
As the distance is covered in less than 450 seconds , The distance must be less than 937.5 m
In 400 seconds , it will travel
= 400 x 125 / 60
833.33 m
Since the distance is covered in more than 400 seconds , the distance must be more than ie 833.33 .
Hence the distance covered is more than .833 m but less than 937.5
In either case these distance are more than .8 km .
Answer:
Probability of tunneling is 
Solution:
As per the question:
Velocity of the tennis ball, v = 120 mph = 54 m/s
Mass of the tennis ball, m = 100 g = 0.1 kg
Thickness of the tennis ball, t = 2.0 mm = 
Max velocity of the tennis ball,
= 89 m/s
Now,
The maximum kinetic energy of the tennis ball is given by:

Kinetic energy of the tennis ball, KE' = 
Now, the distance the ball can penetrate to is given by:


Thus



Now,
We can calculate the tunneling probability as:



Taking log on both the sides:


Gravitational force depends on inverse square law. That is, gravitational force is inversely proportional to square of distance between asteroids.
As distance between them decreases, gravitational force increases. Hence A is correct.
Given that the rope is not moving (acceleration is zero), by the second Law of Newton (F=m*a), the net force acting on the rope is zero.
Then, the force applied by the team B equals the force applied by the tema A: 103 N.