Answer:
1) Q ’= 8 Q
, 2) q ’= 16 q
, 3) r ’= ¾ r
Explanation:
For this exercise we will use Coulomb's law
F = k q Q / r²
It asks us to calculate the change of any of the parameters so that the force is always F
Original values
q, Q, r
Scenario 1
q ’= 2q
r ’= 4r
F = k q ’Q’ / r’²
we substitute
F = k 2q Q ’/ (4r)²
F = k 2q Q '/ 16r²
we substitute the value of F
k q Q / r² = k q Q '/ 8r²
Q ’= 8 Q
Scenario 2
Q ’= Q
r ’= 4r
we substitute
F = k q ’Q / 16r²
k q Q / r² = k q’ Q / 16 r²
q ’= 16 q
Scenario 3
q ’= 3/2 q
Q ’= ⅜ Q
we substitute
k q Q r² = k (3/2 q) (⅜ Q) / r’²
r’² = 9/16 r²
r ’= ¾ r
The correct answer to the question is: A) miles/hour and B) metre/ second.
EXPLANATION:
Before answering this question, first we have to understand speed.
The speed of a body is defined as the rate of distance travelled or the distance travelled by a body per unit time.
Hence, it is a derived quantity which is obtained from distance and time.
The unit of distance can be metre, miles, and the unit of time can be second, minutes or hour.
As speed is the distance covered per unit time, the perfect units will be miles/hour and metre/second.
Hence, the correct options are first and second.
Because Na⁺ ion lacks an electron and O²⁻ has two extra electrons extra, to balance the charge, we need 2 Na⁺ ions.
All ions, atoms and molecules want to get to the minimum energy state, and that state is when the ion, atom, or molecule is neutral, that's why all of them want to balance their charges.
His total displacement from his original position is -1 m
We know that total displacement of an object from a position x to a position x', d = final position - initial position.
d = x' - x
If we assume the lad's initial position in front of her house is x = 0 m. The lad then moves towards the positive x-axis, 5 m. He then ends up at x' = 5 m. He then finally goes back 6 m.
Since displacement = final position - initial position, and his displacement is d' = -6 m (since he moves in the negative x - direction or moves back) from his initial position of x' = 5 m.
His final position, x" after moving back 6 m is gotten from
x" - x' = -6 m
x" = -6 + x'
x" = -6 + 5
x" = -1 m
Thus, his total displacement from his original position is
d = final position - initial position
d = x" - x
d = -1 m - 0 m
d = -1 m
So, his total displacement from his original position is -1 m
Learn more about displacement here:
brainly.com/question/17587058