First do 1.6 m (how far he jumps) 9.8 m/s (what gravity is measured at) then times 2
= 31.36
Sq root = 5.6
Velocity of the sled is 3.2 m/s
Dropping it on a hard surface.
Answer:
9.8m/s²
Explanation:
The acceleration of the ball thrown after leaving my hand is 9.8m/s². This will be the acceleration due to gravity on the body.
- Acceleration due to gravity is caused by the pull of the earth on a massive object.
- The value of this acceleration is 9.8m/s².
- As the ball nears the surface, it comes near zero.
Answer:
y = 67.6 feet, y = 114.4/ (22 - 3t)
Explanation:
For this exercise let's use that light travels in a straight line and some trigonometric relationships, the symbols are in the attached diagram
Large triangle Projector up to the screen
tan θ = y / L
For the small triangle. Projector up to the person
tan θ = y₀ / (L-d)
The angle is the same, so we equate the two equations
y₀ / (L -d) = y / L
y = y₀ L / (L-d)
The distance from the screen (d), we look for it with kinematics
v = d / t
d = v t
we replace
y = y₀ L / (L - v t)
y = 5.2 22 / (22 - 3 t)
y = 114.4 (22 - 3t)⁻¹
This is the equation of the shadow height change as a function of time
For the suggested distance the shadow has a height of
y = 114.4 / (22-13)
y = 67.6 feet