The gas will remain a gas and the energy will be transformed into heat raising the temperature
(Some very rare exceptions might occur)
Answer:
1.77 m/s^2
Explanation:
There are two forces acting on the car along the direction parallel to the incline:
- The driving force of 10,000 N, which pushes forward
- The component of the weigth of the car parallel to the incline, which pulls backward
The component of the weight of the car parallel to the incline is:

So now we can apply Newton's second law to find the acceleration of the car:

The correct answer to the question is 130.4 N.
CALCULATION;
The mass of the bullet is given as m = 28 gram = 0. 028 kg.
The initial velocity of the bullet u = 55 m/s
The final velocity of the bullet v = 18 m/s.
The distance covered by the bullet through the sand bag s = 29 cm.
= 0.29 m
Let the acceleration of the bullet is a .
From equation of kinematics, we know that-

⇒ 


The negative sign is used due to the fact that force is opposing in nature. Its velocity is decreasing with time.
From Newton's second law of motion, we know that net force on a body is equal to the product of mass with acceleration.
Mathematically F = ma.
Hence, the frictional force exerted on the bullet is calculated as -
F = m × a
= 0.028 × (-4656.897) N
= -130.4 N [ANS]
Here, N ( newton) stands for the unit of force.
Answer:
2 m/s^2
Explanation:
from the question
v=15 m/s
t=7.5
a=?
from the first equation of motion
v=u+at
where,
v=final velocity
u=initial velocity
a=acceleration
t=time
from the question (u) will be zero because the body started at rest
v=u+at
15=(0)+a×7.5
15=7.5a
a=15/7.5
a=2 m/s^2