Answer:
m = x
Step-by-step explanation:
y = mx + b
Mx will always be slope if the equation.
Answer:
![\large\boxed{1.\ f^{-1}(x)=4\log(x\sqrt[4]2)}\\\\\boxed{2.\ f^{-1}(x)=\log(x^5+5)}\\\\\boxed{3.\ f^{-1}(x)=\sqrt{4^{x-1}}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B1.%5C%20f%5E%7B-1%7D%28x%29%3D4%5Clog%28x%5Csqrt%5B4%5D2%29%7D%5C%5C%5C%5C%5Cboxed%7B2.%5C%20f%5E%7B-1%7D%28x%29%3D%5Clog%28x%5E5%2B5%29%7D%5C%5C%5C%5C%5Cboxed%7B3.%5C%20f%5E%7B-1%7D%28x%29%3D%5Csqrt%7B4%5E%7Bx-1%7D%7D%7D)
Step-by-step explanation:


![\log_55^{\frac{1}{4}y}=\log_5\left(2^\frac{1}{4}x\right)\qquad\text{use}\ a^\frac{1}{n}=\sqrt[n]{a}\\\\\dfrac{1}{4}y=\log(x\sqrt[4]2)\qquad\text{multiply both sides by 4}\\\\y=4\log(x\sqrt[4]2)](https://tex.z-dn.net/?f=%5Clog_55%5E%7B%5Cfrac%7B1%7D%7B4%7Dy%7D%3D%5Clog_5%5Cleft%282%5E%5Cfrac%7B1%7D%7B4%7Dx%5Cright%29%5Cqquad%5Ctext%7Buse%7D%5C%20a%5E%5Cfrac%7B1%7D%7Bn%7D%3D%5Csqrt%5Bn%5D%7Ba%7D%5C%5C%5C%5C%5Cdfrac%7B1%7D%7B4%7Dy%3D%5Clog%28x%5Csqrt%5B4%5D2%29%5Cqquad%5Ctext%7Bmultiply%20both%20sides%20by%204%7D%5C%5C%5C%5Cy%3D4%5Clog%28x%5Csqrt%5B4%5D2%29)
![--------------------------\\2.\\y=(10^x-5)^\frac{1}{5}\\\\\text{Exchange x and y. Solve for y:}\\\\(10^y-5)^\frac{1}{5}=x\qquad\text{5 power of both sides}\\\\\bigg[(10^y-5)^\frac{1}{5}\bigg]^5=x^5\qquad\text{use}\ (a^n)^m=a^{nm}\\\\(10^y-5)^{\frac{1}{5}\cdot5}=x^5\\\\10^y-5=x^5\qquad\text{add 5 to both sides}\\\\10^y=x^5+5\qquad\log\ \text{of both sides}\\\\\log10^y=\log(x^5+5)\Rightarrow y=\log(x^5+5)](https://tex.z-dn.net/?f=--------------------------%5C%5C2.%5C%5Cy%3D%2810%5Ex-5%29%5E%5Cfrac%7B1%7D%7B5%7D%5C%5C%5C%5C%5Ctext%7BExchange%20x%20and%20y.%20Solve%20for%20y%3A%7D%5C%5C%5C%5C%2810%5Ey-5%29%5E%5Cfrac%7B1%7D%7B5%7D%3Dx%5Cqquad%5Ctext%7B5%20power%20of%20both%20sides%7D%5C%5C%5C%5C%5Cbigg%5B%2810%5Ey-5%29%5E%5Cfrac%7B1%7D%7B5%7D%5Cbigg%5D%5E5%3Dx%5E5%5Cqquad%5Ctext%7Buse%7D%5C%20%28a%5En%29%5Em%3Da%5E%7Bnm%7D%5C%5C%5C%5C%2810%5Ey-5%29%5E%7B%5Cfrac%7B1%7D%7B5%7D%5Ccdot5%7D%3Dx%5E5%5C%5C%5C%5C10%5Ey-5%3Dx%5E5%5Cqquad%5Ctext%7Badd%205%20to%20both%20sides%7D%5C%5C%5C%5C10%5Ey%3Dx%5E5%2B5%5Cqquad%5Clog%5C%20%5Ctext%7Bof%20both%20sides%7D%5C%5C%5C%5C%5Clog10%5Ey%3D%5Clog%28x%5E5%2B5%29%5CRightarrow%20y%3D%5Clog%28x%5E5%2B5%29)

Answer:
Step-by-step explanation:
From the given information, we can compute the table showing the summarized statistics of the two alloys A & B:
Alloy A Alloy B
Sample mean

Equal standard deviation

Sample size

Mean of the sampling distribution is :

Standard deviation of sampling distribution:

Hypothesis testing.
Null hypothesis: 
Alternative hypothesis: 
The required probability is:
![P(\overline X_A - \overline X_B>4|\mu_A - \mu_B) = P\Big (\dfrac{(\overline X_A - \overline X_B)-\mu_{X_A-X_B}}{\sigma_{\overline x_A -\overline x_B}} > \dfrac{4 - \mu_{X_A-\overline X_B}}{\sigma _{\overline x_A - \overline X_B}} \Big) \\ \\ = P \Big( z > \dfrac{4-0}{1.2909}\Big) \\ \\ = P(z \ge 3.10)\\ \\ = 1 - P(z < 3.10) \\ \\ \text{Using EXCEL Function:} \\ \\ = 1 - [NORMDIST(3.10)] \\ \\ = 1- 0.999032 \\ \\ 0.000968 \\ \\ \simeq 0.0010](https://tex.z-dn.net/?f=P%28%5Coverline%20X_A%20-%20%5Coverline%20X_B%3E4%7C%5Cmu_A%20-%20%5Cmu_B%29%20%3D%20P%5CBig%20%28%5Cdfrac%7B%28%5Coverline%20X_A%20-%20%5Coverline%20X_B%29-%5Cmu_%7BX_A-X_B%7D%7D%7B%5Csigma_%7B%5Coverline%20x_A%20-%5Coverline%20x_B%7D%7D%20%3E%20%5Cdfrac%7B4%20-%20%5Cmu_%7BX_A-%5Coverline%20X_B%7D%7D%7B%5Csigma%20_%7B%5Coverline%20x_A%20-%20%5Coverline%20X_B%7D%7D%20%20%20%5CBig%29%20%5C%5C%20%5C%5C%20%3D%20P%20%5CBig%28%20z%20%3E%20%5Cdfrac%7B4-0%7D%7B1.2909%7D%5CBig%29%20%5C%5C%20%5C%5C%20%3D%20P%28z%20%5Cge%203.10%29%5C%5C%20%5C%5C%20%3D%201%20-%20P%28z%20%3C%203.10%29%20%5C%5C%20%5C%5C%20%5Ctext%7BUsing%20EXCEL%20Function%3A%7D%20%5C%5C%20%5C%5C%20%20%3D%201%20-%20%5BNORMDIST%283.10%29%5D%20%20%5C%5C%20%5C%5C%20%3D%201-%200.999032%20%5C%5C%20%5C%5C%200.000968%20%5C%5C%20%5C%5C%20%5Csimeq%20%200.0010)
This implies that a minimal chance of probability shows that the difference of 4 is not likely, provided that the two population means are the same.
b)
Since the P-value is very small which is lower than any level of significance.
Then, we reject
and conclude that there is enough evidence to fully support alloy A.