The atomic number of an atom is determined by the number of protons it has..
It is also the whole number shown on the periodic table
Answer:
C
Explanation:
because it remains the same
The answer is- Mass of flask = 608.04 g
Density (d) is defined as mass of substance divided by its volume. Thus, if mass and density are known, then Volume can be determined.
What is the formula of mass in terms of density?
- Let mass of substance be 'm' and volume be 'V'. Thus, as per the definition of density, it is expressed as-

Thus, mass can be expressed as-

- Now, mass of empty flask = 241.3 g and the mass of (flask + Water) = 489.1 g.
Thus, mass of water =
.
- Thus, mass of water = 247.8 g and density of water =
. Its volume is calculated as-

- Volume of flask = 247.8
. - Then when this flask is filled with chloroform (d =
), the mass of chloroform is-

- Hence, the mass of flask becomes =

To learn more about Density and mass, visit:
brainly.com/question/952755
#SPJ4
Answer:
Explanation:
To find the theoretical yield of the equation. First identify the limiting reactant in a chemical equation.
Step 1: write out the equation and balance it.
Al+ 3mno2=3mn+ 2Alo3.
The limiting reactant is mn02 because it is not found in excess.
Step 2: convert the % to gram . All contain 67.2% mole and mno2 will be 100-67.2= 32.8
All=67.2÷100×290(total gram of the reactants)=194.88g
Mno2=32.8÷100×290g=94.12g.
Step 3:calculate the molar mass of mno2 and that of mn. The atomic mass of mn is 54.9380 and that of oxygen is 16.
Mno2=54.938+ (16)2=86.98g/mol.
Mn=54.938.
Step 4:
From your balanced equation , calculate mn.
94.12g mno2× (1mol mno2÷86.98(molarmass) of mno2×3 mol of mn/4molAl×54.938g of mn÷1mol of mn.
94.12g×1÷86.98g×3÷4×54.938÷1
=44.58g
Answer:
0.4762 J/g°C.
Explanation:
<em>The amount of heat released to water = Q = m.c.ΔT.</em>
where, m is the mass of water (m = 15.0 g).
c is the specific heat capacity of water = ??? J/g°C.
ΔT is the temperature difference = (final T - initial T = 37.0°C - 30.0°C = 7.0°C).
<em>∴ The specific heat capacity of water = c = Q/m.ΔT</em> = (50.0 J)/(15.0 g)(7.0°C) = <em>0.4762 J/g°C.</em>