Since the armature is wave wound, the magnetic flux per pole is 0.0274 Weber.
<u>Given the following data:</u>
- Number of armature conductors = 144 slots
- Number of poles = 4 poles
- Number of parallel paths = 2
To find the magnetic flux per pole:
Mathematically, the emf generated by a DC generator is given by the formula;
× 
<u>Where:</u>
- E is the electromotive force in the DC generator.
- Z is the total number of armature conductors.
- N is the speed or armature rotation in r.p.m.
- P is the number of poles.
- A is the number of parallel paths in armature.
First of all, we would determine the total number of armature conductors:
×
× 
Z = 864
Substituting the given parameters into the formula, we have;
× 
× 
<em>Magnetic flux </em><em>=</em><em> 0.0274 Weber.</em>
Therefore, the magnetic flux per pole is 0.0274 Weber.
Read more: brainly.com/question/15449812?referrer=searchResults
Answer : The final velocity of the ball is, 12.03 m/s
Explanation :
By the 3rd equation of motion,

where,
s = distance covered by the object = 6.93 m
u = initial velocity = 2.99 m/s
v = final velocity = ?
a = acceleration = 
Now put all the given values in the above equation, we get the final velocity of the ball.


Thus, the final velocity of the ball is, 12.03 m/s
Answer:
Connect the test light in series with the negative post, and start pulling feed wires. The first to check is the heavy charging wire from the alternator. A bad or leaky diode in an alternator is a very common source of overnight battery drain. Connect wires one at a time to see what lead is drawing current.