The question is incomplete. The complete question is :
The solid rod shown is fixed to a wall, and a torque T = 85N?m is applied to the end of the rod. The diameter of the rod is 46mm .
When the rod is circular, radial lines remain straight and sections perpendicular to the axis do not warp. In this case, the strains vary linearly along radial lines. Within the proportional limit, the stress also varies linearly along radial lines. If point A is located 12 mm from the center of the rod, what is the magnitude of the shear stress at that point?
Solution :
Given data :
Diameter of the rod : 46 mm
Torque, T = 85 Nm
The polar moment of inertia of the shaft is given by :


J = 207.6 
So the shear stress at point A is :



Therefore, the magnitude of the shear stress at point A is 4913.29 MPa.
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft
Answer:
1.693242
Explanation:
The colors in the Light emitting diodes have been identified by wavelength which is measured in nano-meters. Wavelength is a function of LED chip material. The LED diode which has a = 632 then A1 will be 1.63242, this is calculated by 1 / 632. Wavelength are important for human eye sensitivity. The colors emitted from the LED will depend on the semiconductor material.
Why 1+12+ Y3 < 1100
Says the state of university Need to purchase 1100 computers in total, we have the following answer on the way top