A8 is the answer because yea and because I am a teacher
Answer:
250.7mw
Explanation:
Volume of the reservoir = lwh
Length of reservoir = 10km
Width of reservoir = 1km
Height = 100m
Volume = 10x10³x10³x100
= 10⁹m³
Next we find the volume flow rate
= 0.1/100x10⁹x1/3600
= 277.78m³/s
To get the electrical power output developed by the turbine with 92 percent efficiency
= 0.92x1000x9.81x277.78x100
= 250.7MW
Explanation:
The end-use industries of thermochromic materials include packaging, printing & coating, medical, textile, industrial, and others. Printing & coating is the fastest-growing end-use industry of thermochromic materials owing to a significant increase in the demand for thermal paper for POS systems. The use of thermochromic materials is gaining momentum for interactive packaging that encourages consumers to take a product off the shelf and use it.
Answer:
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes
Explanation:
In order to find the actual heat transfer rate is lower or higher than its value we will first find the rate of heat transfer to power plant:


From First law of thermodynamics:
Rate of heat transfer to river=heat transfer to power plant-work done
Rate of heat transfer to river=2000-800
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes.