I don't know the options but usually a small strainer or a coffee thing u put over a cup and let the water seep down and the sugar stays.
The answer is: b)16,200 seconds :)
Answer:
75 mg
Explanation:
We can write the extraction formula as
x = m/[1 + (1/K)(Vaq/Vo)], where
x = mass extracted
m = total mass of solute
K = distribution coefficient
Vo = volume of organic layer
Vaq = volume of aqueous layer
Data:
m = 75 mg
K = 1.8
Vo = 0.90 mL
Vaq = 1.00 mL
Calculations:
For each extraction,
1 + (1/K)(Vaq/Vo) = 1 + (1/1.8)(1.00/0.90) = 1 + 0.62 = 1.62
x = m/1.62 = 0.618m
So, 61.8 % of the solute is extracted in each step.
In other words, 38.2 % of the solute remains.
Let r = the amount remaining after n extractions. Then
r = m(0.382)^n.
If n = 7,
r = 75(0.382)^7 = 75 × 0.001 18 = 0.088 mg
m = 75 - 0.088 = 75 mg
After seven extractions, 75 mg (99.999 %) of the solute will be extracted.
Answer:

Explanation:
25. Boyle's Law
The temperature and amount of gas are constant, so we can use Boyle’s Law.

Data:

Calculations:

26. Ideal Gas Law
We have p, V and n, so we can use the Ideal Gas Law to calculate the volume.
pV = nRT
Data:
p = 101.3 kPa
V = 20 L
n = 5 mol
R = 8.314 kPa·L·K⁻¹mol⁻¹
Calculation:
101.3 × 20 = 5 × 8.314 × T
2026 = 41.57T

Answer:
The question is not complete, the complete question should be "Lipids vesicles are formed containing pure water. If these vesicles are transferred to a solution that contains a rather high concentration of solutes, the solution outside the vesicle is said to be Hypertonic. True or False"
The answer is True
Explanation:
This is because it contains greater concentration of solutes on the outside of the cell than the increase.
In other words hypertonic solutions have more concentrate of solutions on the outside than the inside.