Answer:
1-butanol has higher boiling point mainly due to presence of hydrogen bonding.
Explanation:
Diethyl ether is a polar aprotic molecule due to presence of polar C-O-C moiety. Hence only dipole-dipole intermolecular force exist between diethyl ether molecules.
1-butanol is a polar protic molecule due to presence of C-OH moiety. Therefore dipole-dipole force along with hydrogen bonding exist between 1-butanol molecules.
So, intermolecular force is higher in 1-butanol as compared to diethyl ether. Hence more temperature is required to break intermolecular forces of 1-butanol to boil as compared to diethyl ether.
So, 1-butanol has higher boiling point mainly due to presence of hydrogen bonding.
Answer:
- <u><em>It will be less than 26 °C as water has a relatively higher specific heat than sand.</em></u>
Explanation:
The <em>specific heat </em>of a substance is the amount of heat energy absorbed by one unit of mass of the substance when its temperature increases one unit.
From that, you can derive the equation for the specific heat of a substance:
- specific heat = heat / (mass × ΔT)
Thus, assuming that all the heat provided by the lamp to both samples is the same and, as given, the amount (mass) of both samples is also the same, you have that the specific heat of the samples will be:
- specific heat = constant / ΔT
So, specific heat and ΔT are inversely related.
It is known that water has a higher specific heat than sand (that is why the sand on the shore of a beach is, during the day, hotter than the water and your feet get burned when you walk on a sandy beach on a sunny day).
Then, since the specific heat of water is greater than the specific heat of sand, the increase of temperature of water will be lower and, consequently, water will reach a lower final temperature than sand, when equal amounts of water and sand are heated as described in the experiment. This is the second choice: the final temperature of water is less than 26°C as water has a relatively higher specific heat than water.
Answer:


Explanation:
Hello!
In this case, since the molecular formula of glycine is C₂H₅NO₂, we realize that the molar mass is 75.07 g/mol; thus, the moles in 130.0 g of glycine are:

Furthermore, we can notice 75.07 grams of glycine contains 14.01 grams of nitrogen; thus, the percent nitrogen turns out:

Best regards!
Answer:
Explanation:
Carbon (coke) burns in air to form carbon dioxide gas.
(i) C(s) + O2 ↑= CO2 ↑