Answer:
[KHP] = 0.0428M
Explanation:
2 methods to calculate concentration after dilution
1. Use dilution equation
Molarity of concentrate (M₁) x Volume of Concentrate (V₁)
= Molarity of dilute (M₂) x Volume of dilute (V₂)
M₁ x V₁ = M₂ x V₂ => M₂ = M₁ x V₁ / V₂ = (1.07M)(10ml)/(250ml) = 0.0428M
2. Concentration Equation
moles KHPh = Molarity (M) x Volume (V) = 1.07M x 0.010L =0.0107 moles KHP
Concentration KHP = moles solute / volume of solution in Liters
= 0.0107 moles KHP / 0.25L = 0.0428M
I believe the third choice is correct.
This can be proven by the fact that to find the molar mass of a compound, you simply add the molar masses of all the atoms within the compound
Hope this helps
Answer:
The pressure contribution from the heavy particles is 17.5 atm
Explanation:
According to Dalton's law of partial pressures, if there is a mixture of gases which do not react chemically together, then the total pressure exerted by the mixture is the sum of the partial pressures of the individual gases that make up the mixture.
In the simulation:
the pressure of the 50 light particles alone was determined to be 5.9 atm, the pressure of the 150 heavy particles alone was measured to be 17.5 atm,
the total pressure of the mixture of 150 heavy and 50 light particles was measured to be 23.4 atm
Total pressure = partial pressure of Heavy particles + partial pressure of light particles
23.4 atm = partial pressure of Heavy particles + 5.9 atm
Partial pressure of Heavy particles = (23.4 - 5.9) atm
Partial pressure of Heavy particles = 17.5 atm
Therefore, the pressure contribution from the heavy particles is 17.5 atm