The statement that is true regarding a distance vs. time graph is option A: The graph should show distance on the vertical axis.
<h3>Where is the plot of distance?</h3>
How far an object has come in a certain amount of time is displayed on a distance-time graph. Time is represented on the X-axis and Distance is plotted on the Y-axis (left) (bottom).
On a distance-time graph, an object's motion is indicated by a sloping line. The slope or gradient of the line in a distance-time graph is equal to the object's speed. The object is travelling more quickly the steeper the line is (and the bigger the gradient).
Note that the distance-time graph shows the relationship between distance and time by plotting distance on the y-axis and time on the x-axis.
Learn more about distance vs. time graph from
brainly.com/question/16825120
#SPJ1
Answer: 735 N
Explanation:
Weight
is a measure of the gravitational force acting on an object and is directly proportional to the product of the mass
of the body by the acceleration of gravity
:
In the case of our planet Earth, the acceleration due gravity is
. So for a man whose mass is
, his weight is:
Answer:
434 Hz
Explanation:
According to the Doppler effect, when a source of a wave is moving towards an observer at rest, then the observer will observe an apparent frequency which is higher than the original frequency of the source.
In this situation, Tina is driving towards Rita. Tina is the source of the sound wave (the horn), while RIta is the observer. Since the original frequency of the sound is 400 Hz, Rita will hear a sound with a frequency higher than this value.
The only choice which is higher than 400 Hz is 434 Hz, so this is the frequency that Rita will hear.
Answer:
80m<em>/</em><em>s</em>
Explanation:
Final velocity is given by
v=u+at
when a motorcyclist starts from rest, initial velocity (u) =0
therefore
v=0+4*20
v=80m/s
that's the answer
Answer
given,
SAT is 500 with a standard deviation of 100.
a sample of 400 students whose family income was between $70,000 and $80,000 had an average verbal SAT score of 511.
sample mean = 
= 
= 5
95% confidence level is achieved within +/- 1.960 standard deviations.
1.960 standard deviations x 5 is equal to +/- 9.8
confidence interval = 511 - 9.8 --- 511 + 9.8
= 501.2-----520.8