Answer:
5.25g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is shown below:
Na2SiO3 + 8HF → H2SiF6 + 2NaF + 3H2O
From the balanced equation above,
8 moles of HF reacted to produce 2 moles of NaF.
Therefore, 0.5 moles of HF will react to produce = (0.5 x 2)/8 = 0.125 mole of NaF.
Next, we shall convert 0.125 mole of NaF to grams.
This is illustrated below:
Mole of NaF = 0.125 mole
Molar mass of NaF = 23 + 19 = 42g/mol
Mass of NaF =..?
Mass = mole x molar mass
Mass of NaF = 0.125 x 42
Mass of NaF = 5.25g
Therefore, 5.25g of NaF is produced from the reaction.
Answer:
An increase in entropy
Explanation:
In ice, the molecules are very well ordered because of the H-bonds. As ice melts, the intermolecular forces are broken (requires energy), but the order is interrupted (so entropy increases). Water is more random than ice, so ice spontaneously melts at room temperature.
Just think about this rationally. Melting ice (or anything) will require heat put in (this is called the latent heat of fusion), so you automatically know that the change in enthalpy is going to be positive. In order to make the reaction spontaneous, delta G, the Gibbs free energy has to be negative. So now look at the formula Delta(G) = Delta(H) - T*Delta*(S). If you know that g is negative, and H is positive, then it is only possible if -T*Delta(S) is negative. If that is positive, then Delta(S) has to be positive. So theres your answer :). An increase in entropy
When it comes to equilibrium reactions, it useful to do ICE analysis. ICE stands for Initial-Change-Equilibrium. You subtract the initial and change to determine the equilibrium amounts which is the basis for Kc. Kc is the equilibrium constant of concentration which is just the ratio of products to reactant.
Let's do the ICE analysis
2 NH₃ ⇄ N₂ + 3 H₂
I 0 1.3 1.65
C +2x -x -3x
-------------------------------------
E 0.1 ? ?
The variable x is the amount of moles of the substances that reacted. You apply the stoichiometric coefficients by multiplying it by x. Now, we can solve x by:
Equilibrium NH₃ = 0.1 = 0 + 2x
x = 0.05 mol
Therefore,
Equilibrium H₂ = 1.65 - 3(0.05) = 1.5 molEquilibrium N₂ = 1..3 - 0.05 = 1.25 mol
For the second part, I am confused with the given reaction because the stoichiometric coefficients do not balance which violates the law of conservation of mass. But you should remember that the Kc values might differ because of the stoichiometric coefficient. For a reaction: aA + bB ⇄ cC, the Kc for this is
![K_{C} = \frac{[ C^{c} ]}{[ A^{a} ][ B^{b} ]}](https://tex.z-dn.net/?f=%20K_%7BC%7D%20%3D%20%5Cfrac%7B%5B%20C%5E%7Bc%7D%20%5D%7D%7B%5B%20A%5E%7Ba%7D%20%5D%5B%20B%5E%7Bb%7D%20%5D%7D%20)
Hence, Kc could vary depending on the stoichiometric coefficients of the reaction.
B. The limiting reactant determines the max amount of product that can be formed
Answer:

Explanation:
<u>1. Energy to heat the liquid water from 55ºC to 100ºC</u>


<u>2. Energy to change the liquid to steam at 100ºC</u>

- n = 10.1g / 18.015g/mol = 0.5606mol

<u>3. Total energy</u>
