Answer:
d = 0.98 g/L
Explanation:
Given data:
Density of acetylene = ?
Pressure = 0.910 atm
Temperature = 20°C (20+273 = 293 K)
Solution:
Formula:
PM = dRT
R = general gas constant = 0.0821 atm.L/mol.K
M = molecular mass = 26.04 g/mol
0.910 atm × 26.04 g/mol = d × 0.0821 atm.L/mol.K×293 K
23.7 atm.g/mol = d × 24.1 atm.L/mol
d = 23.7 atm.g/mol / 24.1 atm.L/mol
d = 0.98 g/L
Answer:
3.91 L
Explanation:
Using the ideal gas law equation as follows:
PV = nRT
Where:
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
Based on the information given in this question,
P = 5.23 atm
V= ?
n = 0.831 mol
T = 27°C = 27 + 273 = 300K
Using PV = nRT
V = nRT/P
V = (0.831 × 0.0821 × 300) ÷ 5.23
V = 20.47 ÷ 5.23
V = 3.91 L
Answer:
the answer to your question is A
Answer:
The answer is the heat is transferred from the ice to the coffee.
Explanation:
Hot molecules tend to transfer to colder molcules, which causes the ice to melt and makes the coffee colder.
Hope this helps! :)
You can't usually just use a single spectrum line to confirm the identity of an element because there are cases that the emission line id not clearly defined. When the emission line is very weak compared to surrounding noise, in which case the more datapoints you have to build up confidence for the existence of a particular emission spectra, the better.